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Abstract

While the complexity of modern engineering systems is significantly mitigated by modu-
larization, the number of modules (e.g., line-replaceable units) can still be large enough
to pose a challenge of developing a coordinated maintenance policy that accounts for the
coupling among individual maintenance schedules for each module. This paper focuses
on opportunistic maintenance, induced failure, and other coupling mechanisms caused by
competing risk phenomena. Modeling the maintenance process of an individual module or
component, even if it includes modern condition-based considerations, can be described
by a relatively small number of distinct states. In contrast, creating a system-level model
that captures all relevant coupling leads to a state-space explosion; an implementation
of such models is either very expensive or not feasible at all. To address this issue, the
present paper explores the idea of developing component-level models that incorporate
the aggregate effects of other components by providing a compact statistical represen-
tation of the combined influence on a given component of all other system components.
This approach is somewhat analogous to the mean-field theory used in physics to avoid
explicit description of pair-wise interactions. An analytical method based on asymptotic
considerations is developed for combining the effects of multiple components into a sin-
gle Weibull distribution (inspection intervals are assumed to be smaller than the failure
scale). The accuracy of this approach is demonstrated by successfully representing the
combined effect of two competing Weibull distributions as well as the combined effect
of two competing lognormal distributions. In particular, it is shown that the proposed
method provides a superior match for the combined distribution in the relevant time
range as compared to standard methods of approximating a distribution (e.g., match-
ing moments or using the maximum likelihood estimate). The accuracy of representing
opportunities using exponential distributions is explored as well.

1. Introduction

Historically, the reliability and safety of engineering systems has been approached
from the opposite direction in at least two distinct dimensions. On the one hand, there
is white-box vs. black-box dichotomy [1] where the distinction is based on whether
the failure process of an entity is modeled with or without the explicit recognition of
individual constituents (components) that comprise the entity. Here “component” refers
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Figure 1: Age-based replacement maintenance schematics

to an elementary building block of a white-box (system) model, which can correspond to
a lower-level entity if models are constructed hierarchically, or to the lowest level of the
hierarchy, as determined by practical considerations (e.g., individual modules, such as
line-replaceable units or LRU). On the other hand, there is non-repairable vs. repairable
dichotomy [2] with the former approach dealing with a single failure event of an entity,
and the latter addressing repeated failure events, which assumes the possibility of partial
of full recovery from failures. While a non-repairable entity is characterized by its lifetime
distribution (e.g., its cumulative distribution function of time to failure), repairable entity
behavior is described by a point process, and so must be characterized differently, e.g.,
using the rate of occurrence of failures (ROCOF), or the expected number of failures for
a given time period. Any permutation of those choices translates into appropriate set
of tools: for example, selecting the black-box direction can lead to accelerated testing
techniques for non-repairable entities, and to modeling repairable entities by means of
stochastic processes.

To make things more difficult (or interesting), the white-box approach entails se-
lecting either the repairable or non-repairable option both at the system (output) and
component (input) levels. Boolean algebra methods (e.g., fault trees and reliability block
diagrams) assume that both systems and the components comprising those systems are
non-repairable. This symmetry between the inputs and outputs characterization (and
associated simplicity and clarity) is perhaps one of the reasons for the popularity of those
tools. In contrast, the use of superimposed processes [2] implies that both inputs and
outputs are repairable entities. In this context, the state-space models that are subject
of this paper can be classified as selecting repairable outputs and non-repairable inputs
within the white-box (system) approach. This state-space representation is attractive
in the context of modeling maintenance processes, as the impact of individual changes
to the system (e.g., change of the maintenance interval, or introducing a more reliable
module) can be captured directly.

To illustrate these options, let us consider a system consisting of n identical com-
ponents that exhibit an increasing hazard rate (as specified below) and are subject to
age-based replacement [3]: all parts are replaced after a specified interval s. A failed
component causes a total renewal of the system: all components (not only the failed
one) are replaced with brand new ones; furthermore, we assume that the replacements
occur instantaneously. Note that failures can shift the original schedule of replacements
(see Figure 1). Here the outputs of interest are the expected numbers of scheduled re-
placements and failures. The number of opportunistic maintenance actions for a given
component is simply the sum of the failures for all other components. A system three-
state diagram is depicted in Figure 2 A: either scheduled maintenance takes place and all
n components are replaced, or one of the components fails (and is replaced), while the
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Figure 2: State-space representation of a simple system with identical components : A) Global (system)
B) local (component)

rest (i.e., n− 1 components) are replaced as a result of opportunistic maintenance. Out
of four transitions depicted, only one, τUF , is random: transitions τFU and τSU are in-
stantaneous, while τUS has a fixed delay or holding time. For a single component system
(n = 1) no opportunistic maintenance is possible, and the transition τUF occurs when the
component fails. The timing of transition τUF is fully defined by the cumulative distri-
bution function F (t) for the failure of the component: once a new part is put in service
t1, the failure time is independent identically distributed in accordance with F (t− t1), as
the replacement component has the same properties as the original one. The resulting
model corresponds to a semi-Markov process where the time distribution of a transition
to a new state depends on the current state together with the time the system spent in
the current state (so-called holding time), but not on the previous history. The failure
intensity, or hazard rate, is evaluated as h(t) = f(t − t1)/(1 − F (t − t1)), where f(t) is
the probability density function corresponding to F (t). An increasing hazard rate implies
h(t3) > h(t2), ∀ t3 > t2 > t1.

As the number n of components in the system increases, the transition distribution
τUF needs to be adjusted to represent failure of any of n components instead of one,
but the structure of the model (Figure 2 A) remains unchanged. However, this is rather
an unusual situation, as the real-life systems are likely to consist of distinct types of
components with nonsymmetric interrelationships, which will cause the size of the system
model to grow dramatically, as the system states are represented explicitly (while the state
of each component can be inferred from the system state). We will refer to such models
as “global” (Markov chains also fall under this category), as opposed to “local” models
that describe explicitly the states of components, so that the state of the system can be
inferred. Stochastic Petri Nets (SPN) represent an example of local modeling that can
provide more compact models with large number of components [4, 5], and a version of
SPN will be utilized in the next section to create such system-level models. However, even
for local models, a description of the fully coupled behavior with hundreds (or thousands)
of components is challenging, if not impossible.

The importance of multi-unit maintenance has been well recognized, and extensive lit-
erature surveys on the subject [6] make it clear that, as the number of components in the
system increases, the level of details captured by the models decreases in order to make
modeling overall complexity tractable. There is a compelling evidence that in both natu-
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ral and engineering domains complex systems are unlikely to be fully coupled, as modular
architecture provides clear advantages in developing desirable systems properties. The
evolutionary advantage of so-called nearly decomposable systems has been demonstrated
for biological systems [7], while similar processes were identified in the history of steam
engine development [8]. These concepts are also explicitly employed in the design princi-
ples of computer systems [9] (including structured design [10]). It is therefore logical to
take full advantage of the modular structure of the systems in modeling system failures.
While in some situations a fully decoupled modeling of each unit is possible, coupling
mechanisms can significantly impact the results. Nevertheless, single-unit models are still
widely used in practice due to the overwhelming complexity of alternative methods of
modeling, leading to sub-optimal selections of maintenance policies.

To this end, constructing decoupled (component) models with accurate representation
of the coupling among components provides an intriguing alternative (cf. [11]). In the
context of state-space modeling this implies specifying any appropriate additional states
of the component, which is relatively easy to do if the coupling mechanisms are well
understood. However, compact representation of the transitions between the component
states due to coupling effects can be significantly more challenging, and addressing this
challenge is the main focus of this paper. It is reasonable to assume that this represen-
tation can depend on the type of coupling, so a brief overview of the possible types of
coupling is described next.

First, we note that in the context of state-space reliability modeling, coupling is closely
related to dependency. It can be argued that one of the purposes of white-box modeling
is explicit modeling of dependency mechanisms, so that the assumption of independence
can be reasonably applied to individual state transitions, even if, from the black-box per-
spective, the corresponding system-level transitions appear to be statistically dependent.
For example, there are several general sources of dependent state transition [12, 6]:

• Common-cause failures, either due to common environment (e.g., cold temperatures
during the Challenger launch that impacted both O-rings), or a common defect (e.g.,
if components were obtained from the same batch made by the same manufacturer).
In either case it is possible to explicitly model the common-cause failure by providing
appropriate state transitions that impact several components simultaneously, while
considering the remaining causes of failures for the components to be independent.

• Shared-load configuration, where the failure of a component can cause redistribution
of the load for the components that remain in operation, and therefore change
their failure distributions. From the white-box modeling perspective, this implies
that several component states must be distinguished, each having distinct failure
distribution associated with the transition to the failed state (in this context care
needs be taken to account for aging processes in each state [13]). In addition, the
consequences of the failure of the modeled component can be different as well from
the system’s perspective: shared-load can be considered a special case of redundant
configurations, if a failure of another component does not alter the “load” for the
component, and therefore its failure distribution.

• Opportunistic maintenance: if one of the components fails and needs a replacement
or a repair, other components of the system can be serviced at the same time (an
opportunity is created for conducting maintenance actions on those parts). For a
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variety of reasons (e.g., the system has been taken off line or partially disassembled,
technicians are available, etc.), servicing several components simultaneously is more
efficient economically than servicing each component in isolation (hence the name
“economic coupling”).

• Induced (cascading) failures, when the failure of a component causes other failures
(for example, a liberated blade in a gas turbine can break neighboring vanes).

• Logistics coupling usually refer to the logistics constraints where repair of a compo-
nent is dependent on what happen to other components that might be competing
for the same resources (spare parts, labor, or facilities). However, there is also the
possibility of a positive coupling, where failure of another similar system provides
an additional repair resource (e.g., cannibalization of parts).

From the modeling perspective, these sources can divided into two scenarios: in the first
(relatively simple) scenario the occurrence of an additional condition is time-independent
(as it either happens or does not). Effectively, the relevant event occurs prior to the mod-
eled time period. For example, components can belong to a higher-risk subpopulation,
and a single value of the corresponding probability is sufficient (combined with the defi-
nitions of the lifetime distributions for both higher-risk subpopulation and for the rest of
the component population). In contrast, the timing of another event is important in the
second scenario so, strictly speaking, the full description of the timing of that event needs
to be specified. It can be observed that the majority of the listed above coupling types
follow this second scenario, where effectively there is a “race” between the internal and
external events in the component model. We will refer to those scenarios as competing
risks as this term is commonly used [14], but in the context of maintenance modeling the
competition is not limited to risk-related transitions (i.e. some type of failure), but in-
stead refers to any possible transitions for a given state (e.g., timing of the first available
spot among several repair queues).

Figure 2 B depicts a single component view of the described process. Here, parameters
of a single component model are used for the failure transition νUF , while a new state
corresponding to the opportunity is introduced along with the corresponding transition
νUO associated with the failure of the other n− 1 components. Parametric distributions
are preferred in state-space modeling from the compactness perspective, assuming that
their accuracy is assured. Significant further simplification can be achieved if constant
transition rates are used: first, each transition is fully characterized by a single parameter,
its constant rate λ; and second, if all state transitions have constant rates, the holding
times are not affecting the chances of transition to the next state, and the resulting process
is Markov (i.e., the chances of transitioning to a new state are fully determined by the
current state). The analysis for Markov processes is significantly easier than for semi-
Markov processes. A transition with constant rate λ follows an exponential distribution,
whose cumulative form is given by Fe(t) = 1− e−λt. In the case of failure transitions, λ is
the reciprocal of the mean time to failure. Fixing the choice of the type of distributions
for transitions for Markov models also facilitates hierarchical model construction and
aggregation of states and transitions [15, 16].

Steady-state results often depend only on the mean parameters of the distributions
associated with the state transitions, justifying the use of exponential distribution even
if the underlying distributions are different (see, for example, the extensions of the Palm-
Khinchin theorem, especially in the context of logistics [17]).
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An additional argument for using exponential distribution is based on what can be
characterized as the central limit theorem for repairable systems: in a complex repairable
system with multiple components, failures form a homogeneous Poisson process [3] at
the system level. The latter argument, however, assumes that there is no coordination
among component failures. In practice, for many systems with clear aging or degradation
patterns (e.g., gas turbine engines), major inspections and overhauls impose an overall
structure, and within each maintenance cycle the failure rate is generally increasing. Op-
portunistic maintenance has been extensively studied [18], [19] and [20], and in all of
those studies the opportunities were assumed to follow exponential distribution [21], [22].
Opportunities can be caused by extraneous events that can be considered random, in
which case exponential distribution is quite appropriate. However, the opportunities can
be also caused by failure of components, which provides an impetus for investigating the
performance of exponential distributions for such cases, and establishing the requirements
for a distribution to adequately represent the combined effect of multiple components.
Specifically, if the exponential distribution is inadequate, we seek to find an alternative
compact representation of a given combined distribution. To this end, the natural step
is approximate the targeted distribution with two-parametric distributions, and ensure
that both first two moments (mean and standard deviation, respectively) of the targeted
distribution are matched. Similarly, the targeted distribution can be sampled and the
maximum-likelihood estimate (MLE) can be used to obtain the most appropriate distri-
bution parameters [23].

The hypothesis explored in this paper is that an alternative selection of parameters
can be more advantageous in the specific context of modeling for coupled maintenance
scenarios that involve competing risk type of coupling. The goal of this paper is not only
to predict the expected number of maintenance events for multiple components, but also
to represent the effect of multiple components for component simulation in a compact
fashion. The resulting representation can be used as modeling blocks for larger models
(for example to evaluate the durations of outages and other relevant system-level effects).

In the context of reliability, Weibull distributions Fw(t) = 1−e−(
t
θ )

β

are often used due
to their flexibility of representing rates that can be either increasing or decreasing with
time. The former correspond to the shape parameter β > 1 (e.g., failures in deteriorating
systems), while the latter correspond to the shape parameter β < 1. Conveniently, for
β = 1, an exponential distribution is recovered, with the scale parameter θ representing
the reciprocal of the transition rate. There are additional reasons for using Weibull
distribution in system reliability, including ease of integration for finding moments, and
the relationship to the “weakest link” mode of failure. The latter property is particularly
pertinent: the Fisher-Tippett-Gnedenko theorem [24, 25] states that for a large number of
identically distributed functions, the competing risk (i.e., the minimum of failure times)
will converge to one of the three families of extreme value distributions (Weibull, Gumbel,
or Fréchet). We explore whether in the case of non-identical distributions and when
the number of distributions is finite (and even quite small) a Weibull distribution can
provide a good approximation for the described combined effect. The justification for the
developed method stems from the asymptotic considerations with respect to the small
parameter s/θ ≪ 1, where s is the replacement interval and θ is scale of the failure
distribution. Asymptotic considerations have been successfully used [26, 27, 28] to make
approximations for reliable systems where the first terms of the Taylor series have been
used. In contrast to that previous work, the present approach relies on the second order
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approximation.

2. Computational Methods for System Analysis

There are no closed-form solution existing for finite time horizons, but two numerical
options exist: numerical integration of the corresponding renewal integral equations, or
discrete-event simulation. Both options are briefly discussed next.

2.1. Renewal equations

For a single component with no scheduled maintenance (when the part is replaced
only upon failure) the corresponding renewal process is well studied. While the integral
equation For our purposes the following form of the corresponding integral equation is
useful:

m(t) = f(t) +

∫ t

0

m(τ)f(t− τ)dτ (1)

Here the renewal density m(t) = dM(t)
dt

, M(t) is the expected number of renewals or
renewal function, and f(t) is probability density function [3, 29] (here we assume that
derivative of renewal function exists). Efficient methods for the numerical solution of
renewal equations exist using, for example, finite differences [30, 31]. The form of Eq. 1
provides a natural interpretation that is amenable to generalization: renewal at time t
can occur either due to the first failure at that time with the probability density f(t),
or due to the repeated failure, where the previous renewal took place at time τ with
the corresponding renewal density m(τ), and the chances of the failure f(t − τ) for the
renewal time τ .

Let us now introduce scheduled replacements at interval s, so the renewal can be
caused either by a failure or by scheduled replacement (if no failures occurred during
interval s). Therefore, we can separate renewal density m(t) into the two distinct parts:
m(t) = u(t) + w(t), where u(t) and w(t) represent renewal density due to failures and
scheduled replacements, respectively. For the first cycle 0 < t < s Eq. 1 remains un-
changed with m(t) = u(t) and the renewal density due to scheduled replacements does
not contribute (w(t) = 0). Noting that R(s) = 1 − F (s) represents the chances that no
failures will occur throughout the segment s, we conclude that in the vicinity of the first
scheduled replacement t = s, the renewal density due to scheduled replacement can be
described using Dirac delta function w(t) = R(s)δ(t − s). This is equivalent to stating
that the expected number of renewals due to scheduled maintenance is zero for t < s and
is equal to R(s) for t = s. For s ≤ t, the renewal density m(t) = u(t) + w(t) can be
obtained from the following system of equations:

w(t) = R(s)m(t− s) = R(s) [u(t− s) + w(t− s)] (2)

u(t) =

∫ t

t−s

m(τ)f(t− τ)dτ =

∫ t

t−s

[u(τ) + w(τ)] f(t− τ)dτ (3)

Here the Equation 2 states that in order for the scheduled maintenance to occur at time
t > s two conditions must be met: there was a renewal at time t − s and there were no
failures during interval s. Similarly, Equation 3 states that in order for the failure to occur
at time t previous renewal must occur at some time t−s < τ < t. In general, for n distinct
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components that can all cause renewal, we can introduce separate renewal densities to to
the failure of each type of the component ui(t), i . . . n, and the corresponding equations
have the following form:

w(t) = R(s)m(t− s) = R(s)

[

w(t− s) +
n

∑

i=1

ui(t− s)

]

(4)

ui(t) =

∫ t

t−s

m(τ)fi(t− τ)R̃i(t− τ)dτ =

∫ t

t−s

[

n
∑

i=1

ui(τ) + w(τ)

]

fi(t− τ)R̃i(t− τ)dτ (5)

Here R̃i(t − τ) is the reliability of all other components, provided by the following ex-
pression:

R̃i(t) =

n
∏

i 6=j

Rj(t)

Effectively, in the presence of multiple components we use disjoint sets of possible out-
comes, which allows us to sum the probability densities. As a result, we can interpret
Eq. 5 as stating that renewal due to failure of component i occurs if the following three
conditions are met:

1. Previous renewal took place at time τ , hence the term m(τ)

2. Component i has failed at time t, while it has not failed in the interval ]t − τ, t[,
hence the term fi(t− τ)

3. No other components failed during interval ]t− τ, t[, hence the term R̃i(t− τ)

Solving Eqs. 4,5 using finite differences can lead to highly accurate results as long as
the selected time step is small enough. In this paper, s is discretized into 1000 segments,
which leads to the results with the relative error usually not exceeding 10−5.

2.2. Simulation

For a small system, a custom Monte Carlo simulation model can be easily developed,
but using standardized graphical representation provides advantages for creating larger
models, in particular for verification purposes. To this end, local or component-based
representation of the state space is more convenient: instead of each state representing
the system as a whole (as in Markov chains), states of individual components are described
along with their interactions, so that the system state can be inferred from its component
states. This is the essence of Stochastic Petri Nets (SPNs) [32],[33], where individual
components are denoted with small circles (called tokens) and their transitions between
states (called places) are denoted with solid rectangles. In the specific version of SPNs
used in this paper [13], each token can change states independently of the others, unless
their behavior is explicitly coupled by means of inhibitors or enablers (denoted as an
arc terminated at a transition with a hollow or solid circle, respectively). A transition
is disabled by an inhibitor if there are enough tokens in the place where the inhibitor
originates, while an enabler acts in the opposite way (the corresponding transition is
disabled unless there are enough tokens in the corresponding place).

Figure 3 depicts an SPN model for n = 3 components. On the left, the operating
configuration is shown, while on the right is the situation when the failure of one of
the components occurs: the corresponding token is moved from the place “Operating”
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Figure 3: SPN coupled model with three components: A) system is in operating state B) system is in a
state when one of the components failed and the rest are undergoing opportunistic replacements

to “Failure,” thus enabling the transition of the rest of the tokens to the place “Op-
portunity.” Due to the fact that the state transitions are local, SPNs are not restricted
conceptually to constant transition rates, although in practical terms this implies that
the solutions are obtained using Monte Carlo simulations. Following a common SPN con-
vention, immediate transitions (without time delay) are depicted with narrow rectangles.
Note that both the global state representation, Figure 2, and the local one, Figure 3,
depict the same process: Figure 3, A represents the operating state of the system, while
B corresponds to failure/opportunistic maintenance in Figure 2. The compactness of the
model shown in Figure 2 is somewhat deceptive: generally global models do not scale
well with the number of components, and local models are more compact [13] (but still
very large for a system with a large number of components).

2.3. Decoupled modeling

Further simplification can be achieved by creating separate models for each component
(see Figure 4 for an SPN model and compare for a generic state-space representation
Figure 2 B) and then combining the results. Again, the simplification becomes apparent
only as the complexity of the problem increases. Indeed, in the considered simple case,
the coupled model (Figures 2, 3) has three and four total states, respectively, as opposed
to three separate models (one per component) that each have four states (Figure 4).
It is important to note, however, that the situation is reverse in practical situations
where components are distinct (and so the failures of each component need to be counted
separately, each requiring a separate state). In general, coupled representation implies
explicit modeling of n2−n pair-wise coupling for n components (coupling in maintenance
does not have to be symmetric). In contrast, there will be only n separate component
models, with only the combined effect of all other components being represented. This
is an attractive strategy, provided that the coupling among the components behavior is
either negligible, or adequately captured. In the case of identical components due to
symmetry only one such model is required, and the main question is how to represent
the opportunity distribution (see the corresponding transition in Figure 4).
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Figure 4: SPN Model for a single component with opportunistic maintenance

2.4. Components with the same shape

The main goal of the paper is developing a procedure for a compact representation
of a cumulative distribution representing the opportunity for renewal due to failure of
multiple parts. First, let us consider a situation where all n components X1 . . .Xn of
a given system follow Weibull distributions with the same shape parameter βi = β,
while scale parameters are allowed to be different: θi. Then the opportunity for the first
component i = 1 stems from the failure of components i = 2 . . . n, and the corresponding
cumulative distribution function for the opportunity can be calculated as

F̃1(t) = 1− R̃1(t) = 1−
n
∏

i=2

Ri(t) =

= 1− exp

[

−tβ
n

∑

i=2

1

θβi

]

(6)

Here R(t) = 1− F (t) denotes respective reliability functions. As a result, the combined
effect of the opportunity is represented by a Weibull distribution with the following the
scale and shape parameters:

β̃1 = β; θ̃1 =
1

[

n
∑

i=2

1

θβi

]
1

β

(7)

So, if all components have the same shape, then the combined failure distribution has
the same shape, and the scale is uniquely defined analytically.

2.5. Example 1: Three identical components

The simplest case where the opportunity representation is non-trivial is for systems
that consist of three components, so the combined effect of failure of two components
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needs to be represented. Let us consider a system that operates for time T = 4. Each
component follows a Weibull distribution with the same shape β = 3 and scale θ = 1.
Based on Eq. 7 we can conclude that the opportunity for each component will follow a
Weibull distribution with the same shape parameter β = 3 and scale θ = 1/ 3

√
2. We

consider a full range of fixed replacement intervals s that span the values from very
conservative s that are significantly smaller than the mean time to failure, to the large
values of s where the effect of scheduled maintenance is negligible, as the failure will
always occur first. As shown in [3], the values of s that are integer fractions of time
T correspond to the discrete jumps of the total cost function that combines the cost of
failures and scheduled replacements (the jumps are associated with an extra scheduled
replacement right before the end of the system life T ), while for all other values the cost
function is a smooth function of s. As a result, those values provide good characterization
of the overall cost function, and so they will be utilized in this and the following examples.
There is no replacement taking place at time T , as the system has reached the end of
its life. This last point is usually irrelevant for systems that operate for long periods of
time, i.e., when the scheduled replacement interval s is much less than T , but it can be
significant when the time horizon T is of the same order as s.

As expected, if the opportunity is provided by the calculated Weibull function, solv-
ing both coupled and component-based models by discretizing Eqs. 4, 5 leads to identical
results within the considered accuracy of 10−5 (here and below, the results from finite-
difference solutions are based on 1000 time steps for a replacement interval s). Next, we
use exponential distribution to represent the opportunity instead of using the Weibull dis-
tribution with the shape parameter β = 3. Figure 5 shows the results for expected failures,
opportunities, and scheduled replacements for various numbers of scheduled maintenance
segments s. Two methods are compared for estimating the scale of the opportunity:

1. Balanced: scale parameters of the opportunity distribution are not pre-calculated,
but rather obtained by means of iteration, to ensure that the number of opportu-
nities matches the corresponding number of failures (since each failure entails two
opportunities). The convergence of this procedure is assured due to the fact that
the involved mapping is monotonically decreasing. Indeed, the more opportuni-
ties, the more frequent the maintenance actions, and the fewer failures occur for
components with an increasing failure rate. As a result of this convergence, an op-
timum scale parameter is obtained with respect to failures and opportunities: any
improvement in the prediction of opportunities will incur the deterioration of the
prediction of failures, and vice versa. Note that the while it is relatively easy to
obtain this solution for identical components (as this a one-dimensional problem),
the scalability of this approach is far from being straightforward, as the system of
nonlinear equations needs to be solved.

2. Scale-matched (SM): A more computationally efficient and scalable approach con-
sists of evaluating the combined chance of opportunity considering failures of other
components for the relevant replacement interval (independent of the failures of the
component itself) and then finding the opportunity scale so that combined number
of failures during the replacement interval is matched.

Figure 6 shows the relative errors associated with those approximations. One can
observe that as long as the failures are relatively infrequent in comparison to the main-
tenance intervals, both exponential approximations of the opportunity work reasonably
well. When replacements are less frequent, the balanced approach generally over-predicts
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Figure 5: Expected failures (top), opportunities (middle), and scheduled replacements (bottom) for three
identical components following Weibull with β = 3 and θ = 1 for time T = 4 as functions of the number
of scheduled replacements. The coupled model is compared to the sum of three component models
with opportunities approximated by exponential distributions. The scale is found either by balancing
total opportunities and failures (“balanced”), or by matching the scale of the distribution with the total
number of expected failures during the full replacement interval (“SM.”)
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both failures and opportunities, while the scale-matched method actually under-predicts
failures while over-predicting opportunities. As a result, there is no assurance that the
prediction of the scheduled replacements by the balanced method is optimal: one can
observe in Fig. 6 that scale-matching actually provides a slightly smaller error. Next,
we explore the possibility of selecting Weibull shape parameters for modeling opportuni-
ties in order to further improve the accuracy of the approximation, effectively trying to
generalize Eq. 7 for the components with different shapes as well as other distributions.

3. Proposed approach

3.1. Winning race ratio

We can still calculate the opportunity for the first component (that is, the combined
chances that one of other components fails) using the general formula for the cumulative
distribution F̃1(t):

F̃1(t) = 1−
n
∏

i=2

Ri(t) (8)

Taking a derivative of Eq. 8 we can obtain the corresponding probability density function
f̃1(t) and evaluate the chances of the opportunity as

O1(s) =

∫ s

0

R1(t)f̃1(t)dt (9)

A direct use of this formula can be complicated by the fact that for a large number of
components the integration can be somewhat involved. However, the main difficulty is
that the formulae provide only the odds of the first action. As renewals take place, the
schedule of replacements can change (see Figure 1), so to calculate the mean number of
failures or opportunistic maintenance for some interval Tw (say, the warranty period),
either the renewal Eqs. 4, 5 need to be solved, or a simulation needs to be used since the
number of maintenance intervals that would “fit” into Tw is unknown a priori.

There are two distinct possibilities for an opportunity to occur for a given interval s
(see Figure 7):

A: The component would not fail on its own during the interval s, while some other
component does fail during this interval. This probability is easily obtained us-
ing Boolean operations if failures are independent and individual distributions are
known.

A1(s) = R1(s)F̃1(s) (10)

B: The component would fail on its own during interval s, but some other component
also fails earlier during this interval. In other words, the component loses the race
to failure to another component (in the first scenario the component does not enter
the race at all). If we denote the odds of this component’s “losing” this race to the
other component with γ1, the following relationship can be written:

B1(s) = O1(s)−A1(s) = F̃1(s)F1(s)γ1(s) (11)
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function. The scale θ = 5 for both functions. Asymptotic approximation (Eq. 16) is shown by the solid
line.

The second scenario is less likely to occur for the practical range of values, but its
probability is non-negligible. If general rules regarding the chances of losing or winning
the race are developed, then a good approximation of those chances will facilitate finding
an equivalent function that represents the action of many components simultaneously.
Since the second scenario is relatively less likely, and the odds of first scenario are easy
to compute, the overall accuracy is expected to be quite good.

3.2. Odds of “winning” for Weibull functions

One can observe that for Weibull distributions, the smaller the shape function, the
more likely the race will be “won.” This dependency can be captured parametrically:
Figure 8 shows γ, the chances of “winning” the race, for the distribution where the first
component has the shape parameter β1 = 1, while the shape of the opportunity varies
(the scale parameter is fixed). Effectively, if competing failures both occur during a given
interval, the more distribution is skewed toward the beginning of the interval, the larger
the chances that this distribution will win the race.
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What is more remarkable is that, for the practical range of scale parameters (which
is unlikely to be less than 2.5s, as this would lead to too many failures), γ is quite
insensitive to the scale parameter, and can be well approximated by a constant value
that is a function only of the respective shape parameters. In particular, this implies
that in that range γ, as defined in Eq. 11, can be considered independent of s. In
fact, this scale independence for Weibull distributions can be confirmed using asymptotic
considerations, as shown next.

3.3. Asymptotic Considerations

Let us consider s to be small as compared to the the failure scales θi, so we can

introduce small parameters ǫi =

(

t

θi

)βi

≪ 1 for 0 ≤ t ≤ s and evaluate γ:

γ =

−
∫ s

0

R1(t)
dR2(t)

dt
dt− R1(s)(1− R2(s))

(1−R1(s))(1−R2(s))
(12)

The first-order terms were studied for highly reliable systems [26, 27, 28], but they are
not sufficient to evaluate γ. Let us include the second-order terms with respect to the
introduced small parameters and evaluate the ratio γ. First, we can observe that Ri =

e−ǫi ≈ 1 − ǫi +
ǫ2i
2
. . .. The integral in the nominator can be evaluated with accuracy up

to the second order terms:

−
∫ s

0

R1(t)
dR2(t)

dt
dt ≈

∫ s

0

(

1− ǫ1 +
ǫ21
2

)

β2

t

(

ǫ2 − ǫ22
)

dt ≈

≈
∫ s

0

β2

t

(

ǫ2 − ǫ22 − ǫ1ǫ2
)

dt =

∫ s

0

β2

t

(

tβ2

θβ2

2

− t2β2

θ2β2

2

− tβ1+β2

θβ1

1 θβ2

2

)

dt =

=
sβ2

θβ2

2

− s2β2

2θ2β2

2

− β2

β1 + β2

sβ1+β2

θβ1

1 θβ2

2

= ǫ2 −
ǫ22
2
− β2

β1 + β2
ǫ1ǫ2 (13)

Similarly, neglecting the terms that are higher than the second order in the remaining
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terms in Eq. 12:

R1(s)(1− R2(s)) ≈ ǫ2 − ǫ1ǫ2 −
ǫ22
2

(14)

(1− R1(s))(1− R2(s)) ≈ ǫ1ǫ2 (15)

Substituting these expressions into Eq. 12, and simplifying, we obtain the following
asymptotic expression:

γ ≈ β1

β1 + β2
(16)

Figure 8 shows the numerical accuracy of this approximation.
This observation leads to the following strategy for deriving an equivalent Weibull

distribution that represents the opportunity:

1. Evaluate the chances of “winning” the race for one of the other components:

F̂1(s) = 1−
n
∏

i=2

(1− γ1iFi(s)) (17)

Here pair-wise winning odds, γ1i, are calculated based on some reference scale pa-
rameters, and so can be pre-calculated (if only Weibull functions are involved, then
Eq. 16 can be used).

2. Divide the chances obtained in the previous step by F̃1(s) (see Eq. 8) to yield an

estimate of the combined winning ratio γ̂1(s) =
F̂1(s)

F̃1(s)
.

3. Find the appropriate shape parameter β̂1(s) given γ̂1(s) ( for Weibull distributions
Eq. 16 can be used).

4. Determine the scale parameter by matching the chances of failure for the total
interval F̃1(s) given the shape β̂1(s).

The key consideration is that if renewal of the system occurred, then the remaining
interval is even smaller as compared to the scales of the failure functions, so the asymptotic
assumptions hold.

4. Results

4.1. Testing the procedure: Example 2

We can note that the smallest non-trivial number of components is three, as for two-
component systems opportunity is provided by another component, and there is no need
to combine the distributions. As described in example 1, if all three components are
identical then the combination is trivial. Let us therefore consider a system where two
components are identical, but the third component is distinct: β1 = β2 = 4, θ1 = θ2 = 3;
β3 = 2, θ3 = 5. Then the opportunity for the third component followsWeibull distribution
with β1o = 4 and calculated using Eq. 7 θ1o ≈ 2.5227. For the other two components
we use the developed method, and by then compare the results for the first component
by evaluating the coupled model, subtracting the results for the third component, and
dividing the results by two (since the first two components are identical). For the total
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Figure 10: Relative errors for Case 2 as a function of the number of replacement intervals per time T = 5

time T = 5, the relative errors are shown in Fig. 10, demonstrating that for a broad
range of replacement intervals, s < T/2 are not exceeding 1%, which for most of the
application is sufficient. The natural question arises regarding the relative importance of
the shape selection, as one can envision the possibility that for any shape parameter, the
accuracy will be reasonable as long as the scale-matching is performed, and perhaps other
shape parameters might provide even better accuracy. The results shown in Figure 11
directly address this question by varying the shape parameter parametrically for a fixed
replacement interval s = T/5 = 1, and matching the scale for every shape. One can
observe that the shape selected based on the proposed procedure β ≈ 4.2 is indeed quite
close to optimal, and the sensitivity with respect to the shape parameter is not trivial.
We note that the perfect match would require that all three curves in Figure 11 intersect
in a single point with the zero ordinate. It is also interesting to observe a non-linear
dependence of the failure prediction errors (as exponential distribution can provide a
smaller error that β = 1.5.)

4.2. Example 3: Weibull distributions with different shapes

Let us consider a three-component system where all three components have different
shapes, and check that the developed procedure provides reasonable accuracy. The first
component follows Weibull distribution, with β1 = 3 and θ1 = 4, while the maintenance
interval s = 1. The opportunity is provided by the failures of two other components that
have the following Weibull parameters: β2 = 2, θ2 = 5, β3 = 4, θ3 = 3.

We can test the procedure by estimating the total number of events of interest for
the time interval T = 5. The SPN models described in Figures 3, 4 have been used to
independently verify the procedure, but the results presented here are obtained using the
finite-difference method due to their superior accuracy.

One can observe (see Figure 12) that up to s = T/3 the accuracy of the method is
quite good, and provides about an order of magnitude of improvement in terms of error
with respect to the use of exponential distribution, so for smaller replacement intervals s
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exponential distribution can be sufficient as well.
Let us now compare the proposed model with more traditional fits, such as matching

the first two moments of the target distribution. Left sides of Figures 13, 14, and 15 show
the corresponding probability density functions, and one can observe that the proposed
distribution does not match the target distribution over the whole range of values as well
as the more traditional fits. However, the situation is reversed when we focus our attention
on the portion of the distribution that is most relevant to maintenance (see the right sides
of Figures 13, 14, and 15). In other words, one can conclude that the described procedure
is effectively a tail-fitting one, and some potential for similarities with the second theorem
in extreme value theory [34] can be further explored. The practical implications of the
difference are not negligible. Indeed, for the interval s = 1, while using the distribution
with the parameters obtained by matching the moments provides a reasonable prediction
of scheduled maintenance and failures, it leads to a 4.89% underestimation of the number
of opportunities for T = 100.

4.3. Example 4: Lognormal distributions

Finally, let us consider a situation where three components follow lognormal distri-
bution with the following parameters: µ1 = log 2.5, µ2 = log 4, and µ3 = log 5; σ1 = 0.4,
σ2 = 0.6, and σ3 = 0.8. As in the previous examples we considered the importance of es-
timating the Weibull shape, and compared the developed procedure with the exponential
representation of the opportunity obtained by scale-matching (similar to the case with
Weibull distribution, about an order of magnitude improvement is obtained by matching
the winning ratio). The total time horizon interval T = 4 and use finite-difference solu-
tions for Eqs. 4, 5. The summary of the results is shown in Figure 16, demonstrating the
relative importance of the shape selection. Note that the shape was selected based on
s = 1 which is equivalent to four replacement intervals for the lifetime T of the system,
and explains why the accuracy is relatively better for that particular segment. One could
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Figure 12: Example 3: failures follow Weibull distributions (all three components are different). Com-
parison of relative errors (in logarithmic scale) obtained using component models with opportunities
represented using Weibull distribution with matched γ and exponential distribution with the matched
scale. Total time T = 5.
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Figure 13: Probability density function (PDF) of opportunity for the first component, and its approxi-
mations using matching the first two moments, maximum likelihood estimate, and the current procedure
that matches weighted γ. Full PDF (left), the left tail (right) 0 ≤ t ≤ 1.
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Figure 14: Probability density function (PDF) of opportunity for the second component, and its approxi-
mations using matching the first two moments, maximum likelihood estimate, and the current procedure
that matches weighted γ. Full PDF (left), the left tail (right) 0 ≤ t ≤ 1.
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Figure 15: Probability density function (PDF) of opportunity for the third component, and its approxi-
mations using matching the first two moments, maximum likelihood estimate, and the current procedure
that matches weighted γ. Full PDF (left), the left tail (right) 0 ≤ t ≤ 1.

adjust the corresponding Weibull shape for each segment s, but that is clearly not neces-
sary as the accuracy is quite good already for a wide range of replacement intervals. As
expected, for small replacement intervals, exponential representation of the opportunity
suffices.

5. Conclusions

An analytical method for the compact characterization of competing-risk coupling
of a component with the rest of the system has been developed and tested on small
scale state-space models. While the models considered in the paper were specific to
modeling opportunistic maintenance combined with the age-based replacement policies,
the described phenomena is pertinent to a broad range of coupling scenarios that involve
several competing transitions from the same state. It has been well known previously
(e.g., Ref. [35]) that the use of exponential distributions in such situation can sometimes
lead to significant errors (if the underlying distribution is non-exponential, including
deterministic delays). However, it was not clear as to which (compact) properties of a
distribution (in addition to the mean) impact the system-level results. While the standard
deviation seems to be a natural candidate, the present work argues that the use of so-
called “winning ratio” γ, provides superior accuracy. Specifically, it was shown that for
Weibull distributions matching the winning ratio leads to more precise results than the
use of a distribution that matches the two first moments of the targeted distributions or an
approximation obtained using MLE. For Weibull distributions, the developed procedure
is also justified on asymptotic considerations that demonstrate that, as the inspection
interval gets significantly smaller than the scale of the distribution, the winning ratio
tends to a simple ratio determined by the shape parameters of Weibull distributions.
Instead of providing a good global match for the whole range of the distribution, the
resulting approximation targets the left tail of the distribution, which is the most relevant
for realistic maintenance scenarios. It was further shown that a combination of lognormal
distribution can be well approximated by a Weibull distribution with matched winning

22

https://www.researchgate.net/publication/222922520_An_analytical_methodology_for_the_dependability_evaluation_of_non-Markovian_systems_with_multiple_components?el=1_x_8&enrichId=rgreq-5b3ff15bed30902d15da27fa214ee19c-XXX&enrichSource=Y292ZXJQYWdlOzI2NjE2ODg1MTtBUzoxODQxMDI0NzI5MjEwODlAMTQyMDkwNDg1ODYwOA==


R
el

at
iv

e 
er

ro
r 

(l
o

g
 s

ca
le

)

Replacement interval (fraction of total time)

Replacement interval (fraction of total time)

Replacement interval (fraction of total time)

R
el

at
iv

e 
er

ro
r 

(l
o

g
 s

ca
le

)
R

el
at

iv
e 

er
ro

r 
(l

o
g

 s
ca

le
)

Failure

Opportunity

Scheduled Replacement

Exponential SM

Winning ratio    matchedγ

Exponential SM

Winning ratio    matchedγ

Exponential SM

Winning ratio    matchedγ

Figure 16: Example 4: failures follow log-normal distributions. Comparison of relative errors (in logarith-
mic scale) obtained using component models with opportunities represented using Weibull distribution
with matched γ and exponential distribution with the matched scale. Total time T = 5.
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ratio as well. It is hoped that the developed procedure will facilitates the compact
representation of maintenance policies for complex systems by enabling the application of
component-wise representation of maintenance processes that accurately represent inter-
component couplings.
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