
ABRIDGED PETRI NETS—VITALI VOLOVOI 1

Abridged Petri Nets
Vitali Volovoi

Abstract—A new graphical framework, Abridged Petri Nets
(APNs) is introduced for bottom-up modeling of complex stochas-
tic systems. Drawing on selected properties of both Color and
Stochastic Petri Nets (CPNs and SPNs, respectively), APNs aim
at maximizing the use of dynamic components of Petri nets
(tokens) in representing systems’ entities. Instead of creating
dedicated subnets for distinct entities, the corresponding tokens
follow similar routes while maintaining their identifies. This is
achieved by purely graphical means (i.e., without resorting to
coding) using a judicious choice of standard routing building
blocks, distinguishing between one-way and two-way interactions,
and employing hierarchical model building. As demonstrated
by several examples from diverse domains, APNs enable clean,
visual, and compact diagrams while retaining the modeling
power and flexibility of SPNs. As a result, APNs facilitate the
efficient performance evaluation of complex systems and effective
communication with decision makers. To support quantitative
performance evaluation of complex systems, APN models are
analyzed using discrete-event simulations. In this context, APNs
are compared to traditional process-interaction discrete-event
simulations.

Index Terms—Petri nets, discrete event simulation, state-space
stochastic models, business workflow performance.

I. INTRODUCTION

THIS paper introduces Abridged Petri Nets (APNs), a new

graphical framework for modeling stochastic behavior of

complex systems that consist of multiple interacting compo-

nents. Modeling of such systems is relevant to several domains.

While the underlying stochastic processes share common

fundamental principles, the preferred tools are often domain-

specific and their choice can be driven by legacy (inertia)

considerations, as much as by the current demands of a

given domain. As modeling sophistication grows and modeling

scope increases (both breadth- or depth-wise), simplifications

that made particular domain-specific tools initially attractive

become less relevant.

These tools evolve in response to changing demand by

incorporating new features that do not always provide a good

fit with the original principles for those tools. Two trends are

usually observed as a result: On the one hand, tools become

increasingly bulkier as the new (not envisioned originally) fea-

tures are “retrofitted”. On the other hand, the functionality of

the tools effectively converges, as those tools are increasingly

expected to tackle the general dynamics of complex systems.

These trends are reinforced by the ongoing consolidation of

commercial vendors, as relatively small companies that used to

cater to niche domains are merged with larger companies that

aim at providing “cradle-to-grave” suites of modeling tools for

engineering systems.

V. Volovoi is an Independent Consultant, e-mail: vitali@volovoi.com.
Version February 6, 2020.

For example, in engineering reliability and safety, Boolean-

logic based frameworks (reliability block diagrams, and fault

trees, respectively) provided convenient tools for estimating

system-level performance in a computationally efficient man-

ner. As technologies evolved and the impact of systems repairs

and reconfigurability increased, the tools relying on those

frameworks were supplemented with Monte-Carlo simulations

and Markov chain modeling “under-the-hood,” while keeping

the user interface relatively unchanged.

A similar process can be observed in the field of discrete-

event simulations (DES), where the original need for modeling

relatively orderly manufacturing processes and influence of

queuing network theory have led to the dominance of process-

interaction DES. The popularity of these tools (see an infor-

mative overview [1]) expanded the realm of applications to

services and logistics among others, leading to introduction

of state-based features, especially in the context of modeling

resources.

Petri nets have experienced a similar evolution in terms of

incorporating the concepts of components’ heterogeneity and

time that were not included in the original formulation [2]. The

original formulation has focused on two distinct nodes types,

places (denoted with hollow circles) and transitions (denoted

with rectangles) that formed a bi-partite directed graph (no

two nodes of the same type can be directly connected). Tokens

(denoted with small filled circles) provide a means to “mark”

a place, that is to identify a state a place was in. From the

state-space perspective, each place represented a component

of the modeled system that can assume states enumerated

by non-negative integers, and the tokens provided a visual

mechanism for depicting those integers. In fact, marking often

is directly denoted with a non-negative number inside the

place. As a result, the tokens have been viewed originally

as indistinguishable and not possessing any attributes on their

own. In this setting, modeling of components with distinct

properties, even if they shared some attributes, required a

dedicated subnet for each component (i.e., the commonality

could not be exploited).

Similarly, the time delays associated with the changes

in components states were deliberately excluded from the

original Petri nets [2], [3]. The changes in components’ state

(events) were implemented by so-called “firing” of a transition

that immediately removes tokens from all its input places

(as identified by the origins of the directed arcs terminated

at the transition), and deposits tokens into the output places

(identified by the outgoing directed arcs from the transition).

The lack of an explicit notion of time provides a useful level

of abstraction for establishing important structural properties

of the modeled system, such as reachability, boundedness,

liveness (absence of dead-locks), etc. [4]. As a result, one

can formally verify that a certain combination of undesired

ABRIDGED PETRI NETS—VITALI VOLOVOI 2

In

12 3

Out

Resource

Task End

T1

T2

T3

Task Start

0 1

Fig. 1. Conceptual SPN resource model

components states is never reached (or ensure that desired

states are always reached), which is useful, for example, in

formal verification of software [5].

Historically, the development of Colored Petri nets (CPNs)

and Stochastic Petri nets (SPNs) followed distinct paths. In [6]

it is argued that CPNs [7] were not specifically designed

to incorporate stochastic behavior. As a result, Generalized

Stochastic Petri Nets (GSPNs) seem to be more suitable for

modeling performance of business workflows, even though

CPNs are more commonly used for this purpose. Following

this logic one step further, we argue that GSPNs were orig-

inally developed for indistinguishable tokens, and as a result

were not specifically designed for distinguishable [8] (colored)

tokens. In particular, when dealing with the resources, existing

colored GSPNs, such as those used in [6] still require dedi-

cated subnet for each resource, or coding of complex rules

ensuring the proper routings of tokens.

The basic issue is illustrated in Figure 1 where several

resources (servers) are utilized to accomplish similar tasks

for multiple customers. We focus on the situation when

resources are distinct (for example, the costs of their utilization

are different). Following standard SPN notations, we denote

immediate transitions using thin bars, and transitions with the

finite delays using filled rectangles. Transition T 1 in Figure 1

provides a match between the supply and demand: for example

a resource token 0 is matched with the customer 2, and the

firing of the transition T 1 results in removing those two tokens

from their respective places, with a token being deposited into

the “Task start” place.

This deposited token enables the T 2 transition, initiating

the task, specifying the attributes of this token i.e., its color, is

not trivial. This color has to inherit properties of both removed

tokens, as these properties are needed subsequently when the

token is split back by transition T 3. This transition needs to

deposit the resource and customer tokens into correct places.

The resulting multi-dimensional colors can be specifically

designed for this problem [9], but the implementation of those

colors in a general setting is bound to require elaborate pro-

grammatic (coding) means. The associated knowledge barrier

can be perceived as advantageous by a modeler, or convince

the modeler to hide the Petri net under an additional layer

of a user interface. Alternatively, one can resign to providing

dedicated subnets for each resource unit, which comes at a

price if there is a large number of resources.

In this context, APNs goal is to balance the needs of color

and time, and provide a means to model resource allocation

is similar complex synchronization patterns in a compact and

graphical fashion without resorting to coding. In particular,

it will be shown how the tracking of individual multiple

resources can be represented within the same network. The

following aspects of APN make this possible and discussed

below upon formal introduction of APN:

• Tokens are viewed as persistent entities that survive

individual firings and can represent system components.

A frugal set of token’s attributes is selected to balance

modeling flexibility and the ease of specification.

• The number of inputs and outputs for transitions is

deliberately restricted to make the routing of persistent

tokens tractable. Specifically, transitions with one input

and one output are denoted as directed arcs between

places, and joints (depicted as triangles) represent the

basic building blocks for splitting and merging tokens

(cf. [9]).

• By default, tokens behave in parallel fashion, and interac-

tions are explicitly specified using two main mechanisms:

symmetric interactions represented by joints, and one-

directional interactions represented by triggers that either

enable or disable transitions. The distinction facilitates

more transparent representation of causal mechanisms

present in the modeled system.

• Hierarchical models are utilized that rely on fused places

(places that appear as distinct graphically but represent

the same place), multiple pages (with subnets connected

by means of fused places), and layers (stacked pages of

similar subnets with an automatic color shift).

The overarching idea is that traditional Petri net transitions

with arbitrary number of inputs and outputs provide too much

modeling flexibility when tokens are distinguishable and need

to be routed into specific outputs. On the other hand, the

majority of transitions in practical models have one input and

one output, so representing such transitions with a single arc

instead of two arcs and a rectangle reduces visual clutter.

One could even consider SPNs with only one input and

one output transitions (with all interactions modeled using

triggers). In fact, as shown below, no modeling power is

lost. However, such restriction on transitions is excessive in

practice, and joints facilitate more compact practical graphical

implementations for certain scenarios. In particular, it allows

the tracking of individual assets and cases without providing

dedicated subnet for each tracked entity.

The paper is organized as follows: Section II provided

the background on relevant modeling frameworks, including

Markov chains, regular and colored SPNs, all using the same

simple scenario of matching car (resource) with customers.

Section III introduces the building blocks of APN. demon-

strates that restricting the model to single input single output

does not reduce modeling power for Petri nets with indis-

tinguishable tokens. The choice between place vs. token for

representing system component is discussed, in particular in

the context of resource modeling (and analogy to the process-

based model is made). Next, joints are introduced and their

role in modeling matching diverse resources and customers

are discussed (including a solution to the problem depicted

in Figure 1). In Section IV several use cases are considered

demonstrating the versatility of the proposed framework. Fi-

nally, the conclusions are presented in Section V, where the

ABRIDGED PETRI NETS—VITALI VOLOVOI 3

NNI

NDU

NNB

WDU

WWB

NWB

DNU DWU

WNB

Fig. 2. Markov chain diagram for two customers and one car. Additional
places colored in soft yellow introduce the possibility of car breaks

difference with traditional process-based DES are emphasized.

II. BACKGROUND

A. Markov chains

Markov chains were introduced more than a century ago

by Andrey Markov as a means of generating sequences of

dependent random events for which a version of the law of

large numbers (i.e., convergence to a steady-state) can be

applied. The first-order temporal structure of this dependence

(each event depends only on the immediately preceding event),

usually expressed as “the future depends only on the present

and not the past,” is not as restrictive as it might seem.

Indeed, the definition of the present can include the salient

information from the past, thus expanding the state-space,

while keeping the relationship linear. Such state expansion

is analogous to the introduction of canonical coordinates in

Hamiltonian mechanics, where the second-order differential

equations of Newtonian dynamics are replaced with the first-

order equations, so that the future trajectory in the phase space

is uniquely defined by the present canonical coordinates.

The resulting balance of simplicity and flexibility in captur-

ing temporal dependence has ensured broad success of Markov

chains as a core of several major informational breakthroughs

of the last century, including Shannon’s information theory and

the web page ranking algorithms developed by the founders of

Google [10]. Even the original application of Markov chains

by A. Markov to modeling the sequences of vowels and

consonants in Alexander Pushkin’s novel Eugene Onegin[11]

remains remarkably relevant in the context of modern appli-

cations such as speech recognition and machine translation.

Originally defined for discrete time, the Markov chains were

extended to continuous time by Andrey Kolmogorov [12].

State transition diagrams help to visualize both discrete and

continuous time Markov chains. Traditionally, the discrete

version explicitly includes the probabilities of staying at the

same state (depicted with self-loops), while for continuous

time self-loops are usually omitted.

Despite this success, Markov chains are prone to “state-

space explosion”—they scale poorly as the number of com-

ponents that comprise the system increases. To demonstrate

this, let us consider a simple continuous-time example cor-

responding to a general problem of balancing supply and

demand. The problems of matching supply and demand are

at the core of modeling needs with SPNs [13]. Although the

SPN applications are not limited to these types of problems,

they provide sufficient wealth of component interactions to

illustrate modeling challenges and test various means for

overcoming those challenges. As discussed in [14], specific

meaning for the customers that generate the demand and the

suppliers of the service that satisfy the demand greatly varies

depending on the application domain.

For specificity, the example is cast in terms of a household

consisting of n family members (later referred to as customers)

and k cars. Three states are defined for each customer: not

needing a car (N), driving a car (D), or waiting for a car (W);

for simplicity, being a passenger in the car driven by another

customer counts as state N . The following inputs to this model

could be considered: the usage pattern of each customer, e.g.,

trips duration and frequency, and the car properties, e.g.,

the frequency of breaks and the duration of the repairs. The

outputs from the model would estimate the “performance” of

this “system,” such as the frequency and duration of unsatisfied

demand. As a result, the impact of changes to the system can

be assessed, e.g., increasing or decreasing the number of cars.

The smallest non-trivial scenario corresponds to a single car

(k = 1) and two customers (n = 2). First, let us consider a

situation where the car can be in one of two states: idle (I)

or in use (U). This “system” consists of three entities (two

customers and a car), so there are 3 × 3 × 2 = 18 possible

permutations of the components’ states that define the state

of the entire system. However, not all of those permutations

constitute feasible system states, so the corresponding Markov

model has only five (instead of 18) states. The green-colored

states in Figure 2 represent the corresponding Markov chain

diagram. Here the state of each entity is represented by the cor-

responding capital letter; for example, the DNU system state

denotes the following combination of “component” states: the

first customer is driving, the second is not needing the car,

and the car is in use.

Extending the possible car’s states to include “broken”

(state B) increases the size of the diagram to nine states (the

corresponding additional states are colored in soft yellow in

Figure 2). For a scenario with n customers and k cars, the

number of system states can be calculated as follows: at any

given time we can have 0 ≤ m ≤ n members of the family

who need cars (demand) and 0 ≤ l ≤ k cars that are not

broken (supply). For each m ≤ l, the number of distinct states

corresponds to the number of ways we can select m driving

members of the family N1(m, l) =
(

n

m

)(

l

m

)(

k

l

)

. If m > l,

then m− l members of the family are waiting for a car (i.e.,

in state W), so the corresponding number of states will be

N2(m, l) =
(

n

m

)(

m

l

)(

k

l

)

. The total number of states will be

given by the following formula:

n
∑

m=0

(

k

l

)

[

l
∑

m=0

(

n

m

)(

l

m

)

+

n
∑

m=l+1

(

n

m

)(

m

l

)

]

(1)

For a family of four with two cars, the number of possible

states is 115, and for a family of five with three cars, that

number is 634. If we consider a fleet of 10 cars with 20
customers, the number of states is 451, 805, 366, 885—or over

451 billion.

ABRIDGED PETRI NETS—VITALI VOLOVOI 4

Not

Needed Waiting Driving

S 0
S 1 S 2

Fig. 3. Markov chain diagram for a component (customer) view

This rapid growth of the state-space size can be mitigated

using symmetry considerations, if the customers or the cars

are not distinguished among themselves. Indeed, for two

customers and one car, the number of states reduces to three

and six without and with the possibility of breaks, respectively,

as states such as DNU and NDU can be merged together.

However, often one does want to track individual performance:

the customer X might take longer trips, and car Y is old and

breaks more often. On the other hand, the state space can

further increase if individual pairings of cars and customers

need to be to differentiated (say, customer XZ is a teenager

who drives a sports car XY more carelessly than a minivan YY,

and has a higher chance of breaking XY than YY, while his

mother drives both cars equally carefully). Such differentiation

would require q! possible combinations for q cars driven at any

given time.

In addition to the state-space size issue, the “global” system-

level view at multi-component systems poses challenges for

modeling varying with time state-transition rates. As discussed

in [15], semi-Markovian processes that allow for taking into

account the time spent in a given state (sojourn time) are not

always sufficient due to the fact that the relevant elapsed time

is often tied to a specific component, and this resolution is

lost at the system level. A component-based representation of

system states has a potential of address both challenges.

The following state-space diagram can be constructed (see

Figure 3) for each customer. The result is a system of

component models that are coupled and need to be solved

simultaneously. The interrelationships about the dynamics of

individual components can be quite involved when transition

rates are not constant even when there are only two com-

ponents. Stochastic Petri nets are specifically designed for

the purpose of describing the coupled behavior of multiple

components in a single model and are discussed next.

B. Stochastic Petri nets

Each state in Figure 2 is labeled using “alphabetical” prin-

ciples, similar to the alphabet-based scripts where words are

comprised of standard “components” (letters), thus obviating

the need of distinct pictograms for each word. Petri nets

effectively provide a graphical equivalent of an alphabet-

based representation by modeling the states of individual

components, rather than the explicit states of the entire system.

As discussed in the introduction, in Petri nets, Markov

chain-state diagrams are complemented by two new types of

objects: tokens and transitions. Both types of objects are briefly

discussed next:

• Tokens: small filled circles denoting individual compo-

nents are placed inside of one of the larger hollow circles

that denote the potential states of those components (the

latter entities are named “places” as opposed to “states”

in Markov diagrams).

• Transitions: in order to model interactions among com-

ponents explicitly, the tokens are routed among places via

intermediate stops or junctures, called transitions, which

are denoted with solid rectangles. Two places cannot

be connected by an arc directly; instead they must be

connected through a transition. The number of input and

output arcs to a transitions does not need to coincide,

enabling the merging and splitting of token routes (and

therefore, effectively, the splitting and merging of tokens

themselves).

The timing of state changes is represented by time delays

for “firing” of transitions: an action that removes tokens from

all input places for the transition and deposits tokens into its

output places. Such Petri nets with time delays are called

timed Petri nets, or, more specifically, Stochastic Petri Nets

(SPNs) [16], [17], when delays can be nondeterministic and

follow a specified distribution. Historically, SPNs referred to

models with exponentially distributed delays only, so that they

could be converted to Markov chains and solved using ap-

propriate techniques for the underlying differential equations.

Here, no limitations on the associated types of distributions

are considered to facilitate the broadest possible range of

applications. Once the problem is posed, the relevant metrics

of the modeled system can be obtained either by means of

discrete event simulation or using alternative techniques for

non-Markovian processes (see, for example [15]).

Figure 4 depicts an SPN for two customers and one car.

The same notations are used as in Figure 1. SPN in Figure 4

consists of three groups corresponding to each component

of the system, and if there are tokens in the places “car

needed” and “car available,” those two tokens are merged into

a single token deposited into the place “car used.” This simple

model reflects the fundamental feature of SPNs in modeling

the coordinated behavior of system components: tokens that

represent the car and the driver are merged into a single “car-

driver” token while driving takes place, and split into separate

tokens again when the driving is complete.

In other words, the pattern of matching resources (see

Figure 1) is present in this problem, but for now we have

only one resource, and we have dedicated networks for each

customer. The resulting model has eight states (places), but

clearly the complexity of the model is determined not only

by the number of places but also by the number of transitions

(ten), connecting arcs (26), and tokens (3). For comparison,

the corresponding Markov model has 23 arcs.

Still, such SPN models scale better than Markov chains

(which explains the fact that they were originally used as pre-

processors for creating Markov chain models [18]). Indeed, let

us have n customers and k cars. This leads to n subnets for

each customer that would have k + 2 places (since we would

have separate place for each of k car used) and two additional

places for each car. The total the number of places in the model

would be n(k+2)+2k, so for 20 customers and 10 cars there

ABRIDGED PETRI NETS—VITALI VOLOVOI 5

First

Customer

Second

Customer

Car Available

Car Needed

Car Used

Car Broken

Car Needed

Car Used

Fig. 4. Stochastic Petri Net diagram for two customers and one car, including
the possibility that car can break during the trip.

would be only 260 places, which is certainly an improvement

over 451 billion! However, the web of connecting arcs will be

so convoluted that the resulting model is still too complex to

be of practical use for conveying the system behavior visually.

Referring back to Figure 4, one can envision 20 segments

of the net similar to the two depicted at the top of the net,

except that each of the subnets would have 10 places for car

used instead of one, and 10 segments similar to the one to

the bottom, with each of the 10 segments at the bottom being

connected to each of the 20 segments at the top).

C. Using high-level extensions of Petri nets

Noting that the subnets for each customer are similar, it is

tempting to use only one of the subnets and represent each

customer by a different token within the same net. At least

two modifications are needed to enable such modeling:

1) Parallel processing of tokens by transitions: we need to

define the behavior of the net when there are multiple

tokens in the same place. While some SPNs use “single-

server” enabling (when tokens are enabled and fired one

a time), here the multiple enabling (or “infinite-server,”

to be precise [16]) is preferable, so that each token’s

eligibility for moving to a new place is assessed in

parallel (e.g., two customers might want to drive a car

simultaneously). While it is possible to incorporate both

single and multiple servers within the same framework,

single servers can be easily represented using multiple

servers, so only multiple servers are used herein.

2) Colors: As discussed in the context of Markov chains,

the state-space explosion is primarily caused by the need

to account for differences in component behavior. If a

token representing a component is traveling within a dis-

tinct subnet (e.g., Fig. 4), one can incorporate the differ-

ences in components behavior by appropriately adjusting

Customers

Car Available Car Broken

Car Needed

Car Used

1 2

0

Fig. 5. Colored Stochastic Petri Net diagram for two customers and one car.
Integer labels (colors) are directly shown inside each token.

the properties of individual transitions for each subnet.

Introducing labels (colors) to Petri nets [8], [7] allows

for the transition properties to be color-dependent, so

that distinct components can be represented by tokens

with distinct colors traveling through the same subnet.

The resulting network is shown in Figure 5. It looks more com-

pact and scalable. However, just like with the resource problem

discussed in the introduction, implementing such a model

requires a fairly complex definition of what “color” means.

The original concept of a token’s color [7] allowed for complex

attributes to be assigned to tokens, as the associated means of

transforming those attributes by means of “inscriptions” (often

elaborate formulae specified for transitions), which allowed

for powerful modeling at the (substantial) expense of reduced

model readability and visual transparency.

This can be contrasted with the simplest and most intuitively

appealing implementation of a “color” is an integer assigned

to a token that can be visualized by the corresponding color (as

shown in Figure 5, tokens’ integers can be depicted explicitly

as well, which is convenient for black-and-white implemen-

tations). One can observe that the merging and splitting of

tokens at transitions causes some bookkeeping difficulties in

terms of tracking individual tokens’ identities (colors). For

example, when the car is used, there is a token that represents

the first customer using the car, and the following transition

should “know” the past of that merged token to restore the

original token that represents the customer and route it to the

top place. If we have multiple cars and family drivers, the

permutations will multiply—requiring a matrix of attributes,

which would explicitly stipulate complex rules governing the

merging of colors and then splitting them back. Next, we

formally introduce APNs and demonstrate possible solutions

for this challenge.

III. APN

APN inherits most of the features of the Stochastic Petri

nets [16]. APN is defined as a network of places (denoted

as hollow large circles) that are connected by transitions.

Changes in the system’s state are modeled by transition firing:

i.e., the removing tokens from the transition’s input places to

ABRIDGED PETRI NETS—VITALI VOLOVOI 6

depositing tokens to its output places. The combined position

of APN tokens at any given moment represents the net marking

M(t), and fully specifies the modeled system. Only enabled

transitions can fire. A transition Ti is enabled at time t if the

associated Boolean-valued “guard” condition Gi : M(t) 7→
{false, true} is evaluated as true. Transitions can be timed

or immediate. Timed transitions have an associated time delay

that is either deterministic or is sampled from a specified

distribution. Timed transitions fire after they are enabled for a

specified time delay.

There are four groups of distinct APN properties that were

outlined in the introduction and are described in detail next:

A. Persistent Tokens

APN treats tokens as persistent (as opposed to transient)

entities that survive individual transition firings. When a transi-

tion fires tokens, two separate actions of removing tokens from

the input places and depositing (potentially some other) tokens

into the output places are united into a single action of moving

tokens from the inputs to the outputs. The implication here is

that components of the systems in APN can be represented

not only by places (as in traditional SPNs) but by tokens as

well.

Tokens can experience “births” and “deaths” throughout

simulation as a result of firing certain transitions (as described

in the transition section below), so the number of tokens is not

preserved.

The following attributes (labels) are associated with a token:

• An identity number (ID), an individual non-negative

integer automatically assigned to a token. The purpose of

token’s ID is to track individual tokens, in particular when

tokens are split and merged (see the joint description in

the next subsection). ID assignment for individual tokens

is dictated by the joints’ actions. Several tokens can have

the same ID, which implies they model different aspects

of the same entity, and some duplicates of an original

token have been created (using split joints) at some earlier

time. In addition to its current ID, a token also maintains

a record of a “shadow” or “recessive” ID - the ID of a

token that was most recently merged with the current one

(if the ID of the merged token was different). The shadow

ID provides a memory of the past token’s identity, which

can be useful later, similar to the concept of recessive

genes.

• A color, a non-negative integer that indicates that a given

token token belongs to a certain class/group of tokens. In

particular, transition policies can be color dependent, and

the color attribute determine the selection of appropriate

transition policy. This color can change when the token is

fired in accordance with the policy specified by the firing

transition.

• An age: a continuous label a ∈ [0, 1[that can change both

when the token is fired, and while it stays in the same

place with the progression of time. The former change is

discrete, and specified by the parameter η ∈ [0, 1[of the

appropriate policy of the firing transition: a 7→ ηa. The

latter property is specified by the aging transition for the

place where the token resides, which is not necessarily the

same as the firing transition. For stochastic delays, the age

corresponds to the value of cumulative distribution (CDF)

for the elapsed time [19], while for a fixed delay the age

is simply the fraction of the elapsed time as compared

to the fixed delay. The latter option provides a simple

means to explicitly enforce queueing priorities, such as

First-in-First-out (FIFO).

Token color is the only attribute that impacts the marking of

the net, and therefore the guards, while token’s age can impact

time delay associated with transitions [19]. As a result, when

a system component is represented by a token, its state can be

characterized both by the token’s color and its place. Using

more traditional for Petri nets Eulerian perspective, a marking

of a place is characterized by a multi-set: a union of sets of

tokens of different colors occupying a given place.

The second consequence of using an atomic firing is that a

transition with a single input and a single output has a very

clear and simple interpretation: a token move represents the

state change of the component depicted by this token; in this

context, the visual object of a transition node becomes super-

fluous, and two places can be directly connected by an arc,

as in Markov models. The practical implication of eliminating

these superfluous visual objects is usually quite substantial due

to the fact that majority (and often all) transitions have one

input and one output. Next, APN transitions are described in

more detail.

B. Transitions

APN employs only two types of transitions: direct arcs

connecting two places that can have a finite delay, and joints

that facilitate splitting and merging tokens (no delays are

associated with those actions). Both types are described next.

Regular Transitions: A regular transition is enabled or

disabled based on the combined marking of the input places

of the associated triggers, inhibitors and enablers that are

described in the next subsection.

Transitions have color- and age-dependent policies that

specify the delay between the moment when the token is

enabled and when it is fired (for example, one can specify

separate distributions for distinct colors, while age can accu-

mulate as the cumulative distribution function of the aging

transition). If a token-transition pair is enabled, a firing delay

is specified based on the combination of token and transition

properties. If the token stays enabled throughout the delay,

the token is fired after this delay expires. If there are multiple

enabled tokens in the same place, they all can participate in

the firing “race” in parallel. Similarly, the same token can be

involved in a race with several transitions. If a token-transition

pair is disabled, the firing is preempted (however, the aging

label of the token can change as a result of being enabled for

a finite amount of time).

The delays can be deterministic or follow any specified

random distributions. The firing after a specified delay is

“atomic”: it is a single action of moving a token from an

input place to an output place (tokens do not dwell between

places in contrast to some versions of SPNs [20]).

ABRIDGED PETRI NETS—VITALI VOLOVOI 7

Joints: Joints allow merging and splitting of tokens and de-

picted as equilateral triangles. A joint connects together three

places, and it provides an alternative to a regular transition that

connects two places. Joints actions are immediate. Split joint

has one input place and two output places. When present, a

single token is removed from the input place, and two identical

copies of that token (that have the same IDs, colors and ages)

are deposited into the output places.

Merging joint has two input places and a single output place.

For merging joint we can specify which of the two tokens will

be “dominant” and passes its attributes (age, color, and ID) to

the merged token. If the ID of the “recessive” token is distinct

from that of the dominant token, the dominant token “inherits”

the ID of recessive token as a “recessed” or “shadow” ID. The

dominant input path is shown with a thicker arc (the recessive

token input is shown with the regular arc). There are four

options for the merger joint:

• Any two tokens can be joined. This option is depicted

with the letter “A” inside the joint.

• Only tokens of the same color can be joined together. This

option is depicted with the letter “C” inside the joint.

• Only tokens with the same ID (that is those that originated

from the same split joint at some point in the past) can be

joined. This option is depicted with the letter “I” inside

the joint. This is the only merging where there is no

“recessive” ID to inherit for the dominant token, since

both tokens have the same main ID. The main purpose

of the “shadow” ID is to provide a memory about the

previous mergers, so in this case the dominant token

inherits the recessive ID from the recessed token.

• A recessive token retrieves its “recessed” (shadow) ID

and matches it with the ID of a token at the origin place

of the dominant input arc. The main ID of the recessive

token is inherited as the recessive (shadow) ID of the

dominant token. This option is depicted with the letter

“R” inside the joint, and it is useful when matching multi-

class resources, as described below.

C. Modeling Interactions (Guards)

APNs consider default token’s firing as parallel (inde-

pendent), and therefore focus on the coupling (interactions)

in clearly defined fashion. Specifically, two mechanisms are

employed: triggers (inhibitors and enablers), and merging of

tokens using joints. Both of those mechanisms are discussed

next.
Triggers: Inhibitors are depicted as arcs originating at a

place and terminating at a transition with a hollow circle.

An inhibitor of multiplicity k disables a transition at which it

terminates if the number of tokens in its input place is at least

k. An enabler (depicted as an arc originating at a place and

terminating at a transition with a filled circle) is the opposite

to an inhibitor: a transition is disabled unless an enabler of

multiplicity k has at least k tokens in its input place. Triggers

describe a unidirectional (one-way) dependence: the marking

of a place where the trigger originates influences the enabling

of a transition (and therefore its firing). The unidirectionality

of dependence facilitates unambiguous modeling of causality

of modeled processes.

Joints: Merging joints provide a bi-directional means of

dependence by merging a pair of tokens that satisfy matching

criteria of the joint. However, the symmetry of component’s

interaction is not complete since one of the inputs is dominant

(the merged token inherits most of the properties of the

dominant input, except the recessive ID, as described above).

D. APN Hierarchical Properties

Hierarchical constructions for combining multiple subnets

are used to model large-scale systems. Fusing places, com-

monly used in hierarchical Petri nets (see, for example, [7])

are employed to connect different parts of the model, including

different model sub groups. Each page of the model can dis-

play several subgroups (so the same subgroup could appear in

more than one page if needed). Fused places appear as distinct

graphical entities during model construction, but represent the

same entity in simulation. When two places belonging to

different tabs are fused together, it simply means that they

are separated for visual convenience and readability, but they

are essentially the same place from the simulation perspective.

One can visualize different pages as distinct layers, like floors

in a building with elevators connecting distinct floors.

Taking this logic one step further, one can effectively utilize

a third dimension (depth) and consider a stack of similar (but

not necessarily identical) subnets that are positioned as a deck

of cards on the same page.

An automatic generation of layers of multiple pages that

contain similar but possible distinct subnets can be facilitated.

In particular, an automatic “color shift” is used to differen-

tiate between the tokens from a given layer and ensure that

the tokens enter the desired layer when needed.

IV. EXAMPLES

A. Modeling with Directly Connected Places

Next, we demonstrate that any immediate transition with

multiple inputs and outputs can also be modeled using a

combination of enablers and inhibitors with direct transitions

between places (in other words, the modeling power is not

reduced). Let us consider an immediate transition with n inputs

and m outputs. First we note that it is sufficient to show that

we can reproduce two basic patterns: merging of two streams

tokens together, and splitting a single stream into two. Indeed,

then we can apply sequentially n− 1 merging segments, thus

merging n inputs into a single one, and then we can apply

m− 1 splitting segments.

Figure 6 demonstrates the equivalent APN construct for

merging pattern. Here fast transitions of fixed durations (as

noted in the figure) are used to ensure the desired order of

the transition firing, with the basic unit of time ǫ chosen small

enough to avoid a noticeable impact on the quantitative results

due to the overall delay incurred after all transition fired e.g.,

10−6 of the characteristic time of simulation). Let us consider

a situation when at time t there is at least one token in both

places “A” and “B”. At time t + ǫ a token is fired from the

“B” place into the “B in” place. This enables transition at the

top of the net from the “A” to “A in” place, but also inhibits

(disables) transition that just fired to ensure that exactly one

ABRIDGED PETRI NETS—VITALI VOLOVOI 8

T1

Output

A

B

A)
A

B B In

A In

Output

Sink

2ε

ε

ε

3ε

B)

Fig. 6. Equivalency of a merging pattern in A) regular SPN and B) APN
without joints

T2

A

B

A)

3ε

B)

In

Source

A

B

2ε

In

Fig. 7. Equivalency of a splitting pattern in A) regular SPN and B) APN
without joints

token is removed from the “B” place in a single cycle of

transactions. At time t + 3ǫ a token is fired from the “A”

place into the “A in” place, also disabling the transition that

just fired, thus ensuring that only one token is removed from

the place. Finally at time t+4ǫ two transitions fire: the token is

removed from the “A in” place into the “Sink” place (a special

type of place with no outputs where tokens disappear), and

the token is moved from the “B in” into the “Output” place.

Then the process can be repeated if there are more pairs to be

matched.

Figure 7 demonstrates the equivalent APN construct for

splitting pattern, here a source type of place is utilized to create

new tokens with the delay specified by the outgoing transition.

Similar to the merging partner, the timing of the fast transitions

is selected to ensure that each transition fires exactly once per

incoming token. In contrast to the merging scenario, there is

no need to specify an inhibitor for the transition that originates

at the source, as source has only one token at any given time.

A natural question is related to representing timed transi-

tions in a similar format. While for the splitting pattern, one

simply need to insert a timed transition before the split, for

the merging pattern (when transition T 1 in Figure 6 has a

finite delay) the situation is less straightforward. Indeed, we

need to define first what the merging pattern for the infinite

server firing policy for finite delay with multiple tokens. Are

the pairs of tokens to be merged identified at the enabling

phase and a clock is associated with each pair of tokens (one

from each incoming place)? What happens if one of the tokens

from this pair gets pre-empted (fired by another transition)

before the clock runs down? Does the pair gets disabled, or it

looks for another match at the same place? It seems that such

policies become too complicated for distinguishable tokens to

be represented by a simple notation as shown in Figure 6 A)

when T 1 has a finite delay.

B. Car modeling

Let us return to the car example. The corresponding APN

diagram is depicted in Fig. 8A. There are two types of tokens:

customers and cars (specific shapes can facilitate visualization

in a software implementation, but here we use more traditional

circle shapes).

Instead of creating two separate places for both possible

states of the car (broken or not), we employ token colors

(i.e., integer labels) to create a more compact model. Here we

take advantage of the fact that a family member (customer)

might not be able to drive a car (the car is unavailable) for

two distinct reasons—either when another customer is already

driving the car, or when the car is broken. We combine both

possibilities into a single place, “Unavailable,” and provide an

inhibitor to transition 2 that ensures a limited capacity for that

place. Furthermore, an immediate transition, 4, “pushes” the

token representing a customer to the “Waiting” place when

the car breaks (due to the enabler of multiplicity 2). To ensure

that the tokens representing cars and people don’t get mixed

up, they are differentiated by color: when the car token gets

to the “Unavailable” place, it has color 0, as opposed to the

customers’ tokens that have color 1; outgoing transitions from

that place are color-dependent (transitions 3 and 4 are only

sensitive to color 1 [people], while transition 6 is sensitive only

to color 0 [car]). If a trip is interrupted by the car’s breaking,

the family member has to wait until the car is fixed, and then

attempt the interrupted trip again (from the beginning).

The model is set up for easy scalability: we simply need to

add more tokens and adjust the trigger multiplicity to change

the number of cars and customers. E.g., for a fleet of k = 2
cars with n = 4 customers, the model is shown in Fig. 8B (the

enabler multiplicity is k+1 = 3, and the inhibitor multiplicity

is k = 2). At the time of the snapshot, we have one car broken,

one car driven, two customers not needing a car, and one

customer waiting for a car. In this model, if a car breaks but

there is another car available, the customer simply switches to

another available car.

The compactness of the model is due in part to representing

a resource as a place with limited capacity (by means of an

inhibitor). Conveniently, this capacity does not to stay constant

throughout the simulation. Instead, it effectively changes when

tokens representing broken cars displace the customer tokens.

Such a construction has a venerable tradition in Discrete Event

Simulation when the effects of broken servers are simulated,

and in general it is worthwhile to note the similarity of this

representation to that of process-interaction DES [1]. However,

there are important differences as well: first, the example

demonstrates the ability to interrupt (cancel) a process when

the car is breaking and the the broken car token pushes the

customer token into the waiting place. Traditionally, process-

interaction DES require more elaborate constructions to model

such effects [14]. Such representation is useful when it pro-

vides the desired level of modeling resolution. As discussed

in [21], focusing on the “servers” (marking of a place) rather

than “transactions” (tokens)1, can provide a coarser level of

abstraction that leads to more compact models.

There are situations, however, when more explicit modeling

of the resource use is required, analogous to the models

1Effectively assuming Eulerian rather than Lagrangian viewpoint, as elab-
orated in the Discussion section.

ABRIDGED PETRI NETS—VITALI VOLOVOI 9

A) B)

1

2
3

5

6

4

Not Needed Waiting

Car OK

Car Broken/

Customer Driving

2

0

1 1
1

2
3

5

6

4

Not Needed Waiting

Car OK 3

0

1 11

0 1

2

Car Broken/

Customer Driving

Fig. 8. APN model of matching customers with cars A) 1 car and 2 customers
and B) 10 cars and 20 customers

represented in Figures 1,5, and next we discuss how these

scenarios can be modeled in APNs using joints. In particular,

some of the approximations can be removed (for example, we

might want to consider that car breaks more often when they

are actually driven, instead of a “smeared” representation of

cars breaking).

Resource modeling with joints: The notional SPN model

for resource allocation (Figure 1) is translated into an explicit

APN model as shown in Figure 9. The explicit APN model

is naturally more complex than the idealized version for SPN.

This latter version can be directly reproduced in APN with

transition T 1 represented by a merging joint with policy

“Any”, T 2 with a regular transition (represented as a direct

arc) and T 3 represented as a split joint. However, the resulting

model would only be valid for a non-distinguishable resources,

unless complex inscriptions are utilized. Otherwise, each re-

source requires a dedicated subnet that are fused together in

the shared pool of resources place. The APN model shown in

Figure 9 is described next.

When an individual customer token appears in the “In” place

it is duplicated first. One of the copies is used to initiate the

resource request. If the resource is available, the merging joint

is fired, and the merged token is deposited into the “Resource

seized” place. The resulting token inherits resource properties

(this is ensured by selecting as dominant the upper input

branch into the joint, as visualized by the thicker line of the

dominant arc). The ID from the task token is inherited as a

recessive ID for the token (it will be used later). The joint

type is “Any” as here no requirement to the type of resource

is specified.

This model can be further refined if only some of the

resources are suitable for the task (in this case colored policy

can be selected for the joint). The resulting token is duplicated

next to keep a resource copy. The other copy is merged with

the copy of the task token, where the recessive ID merging

option “R” is utilized (since the recessive or shadow ID of

that token matches the task’s ID). After the task is completed

and the token moves to the “Task end” place it gets duplicated

with one copy used to indicate the completion of the task

(the “Out” place), while the other copy is used to merge with

the copy of the resource and release the resource. Here the

dominant input is from the “Resource copy” place, and “R”

matching policy is utilized.

Next, the explicit resource model is utilized to construct

a more detailed car-customer model, as shown in Figure 10.

In

Resource

Resource Copy01

Task Start

45

Resource
Used

Resource Request

Task Copy

Resource Seized

Resource Released

Out

23

Task End

Resource Return

A

R

R

T2

Fig. 9. APN model of explicit resource modeling

Car and customer symbols are used to represent individual

tokens and the numbers inside of each token denote its ID.

The model represents a refinement of the model shown in

Figure 8. Several transitions are carried over: specifically, the

delays associated with the demand (transition 1), the duration

of each trip (transition 3), as well as the car breaking and repair

(transitions 5 and 6, respectively). However the car breaking is

modeled more precisely by distinguishing the delays between

the breaks while the car is not used (which is represented

with transition 5) and the frequency of car breaks during the

trip (the corresponding distribution is assigned to transition

2, and it does not have an equivalent in Figure 8). This

model reproduces most of the elements of the general resource

problem (cf. Figure 9), with several additions: first the entire

closed-loop model is shown.

To keep the general left-to-right flow of the model, we fuse

three pair of places together: the “Not needed”, “Broken car”,

and “Need car” places respectively. The key difference is the

introduction of transition 2 (corresponding to the possibility

of car breaking during the trip). Figure 10 shows the snapshot

when such event occurred to car with ID 2. After the car token

is moved to the “Car breaks” place, the car token is duplicated

using a split joint with the lower branch used to deposit a car

token into the “Broken cars” place.

The upper branch deposits the duplicate token into the “Car

broke” place (this is the frame shown in Figure 10). The

recessive ID of this car token is 6, since it was assigned when

the resource (car) was originally seized2 by a customer with

that ID. As a result, the merging joint with the recessive (“R”)

policy is enabled, the car token is merged with the dominant

token representing the customer with ID 6 and the resulting

token is returned to the “Need car” place (since the customer

has not completed his trip and has to repeat it). If desired,

the customer token can be aged by transition 3, so that an

interrupted trip (or any other service provided by the server)

can be resumed not from the beginning but where it was left

off (the age would be reset upon firing of the transition 3).

2The term “seized” is inherited from discrete event simulation where it
represents the starting moment when the resource is not available for other
use, so it does not imply that the car or its engine was actually seized.

ABRIDGED PETRI NETS—VITALI VOLOVOI 10

Need Car

Cars

1

Car copy0

Task start

4

Car Used

Car Request

Task Copy

Car Seized

Car Released

Not Needed

Task End

Car Return

Not Needed

35

Car Breaks

Car broke

Broken Cars
2

Need car

Broken Cars

A

R

R

R

6

1

3

2

5

6

4

2

Fig. 10. Cars and Customers model in APN with explicit resource modeling

C. Explicit matching of supply-demand pairs

To this end, it is convenient to expand the model into the

third dimension (or “depth”) by considering subnets stacked

in layers, as depicted in Figure 11. Unless we want to assign

specific properties to particular pairs of tokens (see the next

section), the number of layers does not need to exceed the

number of demand-supply pairs at any given time, so that

for k cars and n customers, at most min {k, n} subnets are

needed.

In a software implementation, these layers can be created

automatically, and one can switch the views among layers (by

bringing the layer of interest to the top of the stack) as desired.

The six triggers of each subnet (see the right, shaded part of

Figure 11) are arranged to match one car with one customer

within each net (assuming that both the customer and car

are available). Figure 11 depicts a situation where there is

a customer waiting for a car, but no cars are available: Token

1 appears in ‘the ‘Waiting” place and enables an immediate

firing of a token representing a car from the “Available”

place to the “Car used” place, but there are no tokens in the

“Available” place. When, for example, token 3 representing a

car moves the “Available” place (the car has been repaired) it is

immediately moved to the “Car Used” place, and the inhibitor

from that place disables this transition, preventing more tokens

(representing cars) from being fired (if there were more tokens

in the “Available” place, they would not move). It must be

noted that the reverse transition is also enabled momentarily,

so either that transition needs to be assigned a lower priority

(e.g., slower, if we are using fixed small delays), or we can

make the triggers color-sensitive (so that the enabler in the

transition from the “Waiting” place to the “Car Used” place

is sensitive only to car tokens, while the inhibitor is sensitive

only to the customer tokens—the multiplicity of the inhibitor

should be equal to unity in this case).

This enables the transition for the customer to move from

the “Waiting” place to “Car Used” gets enabled and fires

Waiting Not Needed

 Car Broken Available

Car Used

2

2

2

Subnet #1

3

1 2

4

2

3

5

6

1

2ε

ε

ε

ε

Fig. 11. An Abridged Petri Net (APN) diagram for multiple cars and
customers while tracking specific pairing of customers with the service

(token 2), and similarly the inhibitor ensures that only one

token moves (since the total number of tokens in the “Car

Used” place cannot exceed two—that is, the multiplicity of

the corresponding inhibitor). As a result, if the customer

represented by Token 1 is also in the “Waiting” place, it would

continue to wait for a car.

When the second car is repaired, transitions for Subnet #2
are enabled, and the matching of the customer with a car takes

place. At this point we have both customers driving cars. If

a car breaks in the first subnet, the corresponding Token 3
moves to the “Car broken” place, then the transition from

the“Car Used” place to the “Waiting” place becomes enabled

and fires the token 2. When the trip ends for the second pair

(the customer’s Token 1 moves to the “Not needed” place,

then the car’s Token 4 moves back to the “Available” place ,

enabling the possibility for the first customer to complete the

trip.

In this example, all subnets were essentially equal—they

simply provided a means of accounting for each pair of

tokens separately. However, one can further refine the model

and allow for the possibility of differentiating among the

subnets. In the considered example, we can assign a particular

combination of colors to a specific subnet that might have

distinct properties (for example, if a teenager drives a car,

the chances of the car’s breaking might increase). Next, we

describe a general mechanism that facilitates the modeling of

this and similar situations.

Let us consider a situation with multiple but distinct subnets,

so that tokens that leave a subnet should be returned to that

specific subnet (and not to any other subnet). A repair process

is one example of this situation, and so is the processing of

documents: when a car is sent to the shop, one hopes to receive

the same car fixed (and not somebody else’s fixed car). Using

an automated color shift allows this situation to be modeled

automatically. First, we determine the range of colors utilized

in the subnet that is used as a template for multiple subnets

(see Figure 12). Let us denote this range as 1 . . . j without

the loss of generality (recall that colors are useful only to

differentiate transition policies, so they can always be shifted

together).

If we want to create m subnets, then we introduce a

ABRIDGED PETRI NETS—VITALI VOLOVOI 11

shifted range of colors: for k-th subnet (1 ≤ k ≤ m) the

corresponding range of colors will be jk+ 1 . . . j(k+ 1). An

automatic check of color changes can be implemented to verify

that colors are not changed outside of the subnet, so that a

token cannot be accepted by the “wrong” subnet. Figure 12

depicts subnet #1 (color range 0 . . . 2) when the component

denoted with the token 2 needs service. Token 3 returns from

service Subnet #2 (color range 3 . . . 5) when the component

denoted with.

colors 0-2

Subnet #1

1

Working

Need Service

2

Received

In TransitQueue

Serviced Returning

3

Fig. 12. A general representation of the color shift model using Abridged
Petri Nets (APNs). There are multiple transitions from the outside of the
subnets to the subnets, but each transition is restricted in terms of the range
of colors it can transmit to ensure that tokens return to their “home” subnet

D. Customer Interruption

Here we consider the challenge of balancing the economies

of scale and the risks posed by the interruptions following

[22]. Let us consider a motor vehicle department, with first-

in first-out (FIFO) and the possibility that some customers

will abandon the queue. The corresponding model is shown

in Figure 13. Transition T 1 controls the flow of incoming

customers: when it fires the customers stop arriving due to the

inhibitor that disables transition T 2. Similarly the top right of

the model provides a clock for interruption and restoration of

service (transitions T 5 and T 6, respectively). To model FIFO

policy, transition T 3 that represents the abandonment of the

queue is specified as the aging transitions for tokens located

in the “Waiting” place. This is combined with specifying

transition T 7 as fast fixed age-dependent transition: when the

scale of the transition is ǫ, and the age is 0 ≤ a < 1, the delay

is aǫ. This ensures that the “older” tokens are fired first by the

T 7 transition.

V. DISCUSSION

In this section some of implications of the choices made in

APN are discussed, following the same four general categories

that was used to define APN.

A. Persistent Tokens

Representing system components in APN using not only

places but also tokens is analogous to invoking two classical

views in continuous mechanics. Therein, a continuous flow, for

example of water in a river can be studied from the perspective

of a fixed location that encounters varying quantities of the

Source

Waiting: 2

OK
Interruption

Serving: 10

Sink

Abandoned Served

Clock

End of Service

T2 T7

T5

T6

T3

T8

T4

T9

T1

10

Fig. 13. A simple APN model of a queue with customer abandonment and
interruption

fluid that passes by. This is referred to as Eulerian viewpoint.

In contrast, the Lagrangian approach considers the flow from

the point of view of a moving particle (see for example [23]).

Using this analogy APN provides the Lagrangian in addition

to Eulerian viewpoint that is more commonly used by Petri

net formalisms3. As discussed in [15], both perspective can

be useful in understanding complex stochastic processes.

The first benefit of merging the two separate actions into

one is the removal of the ambiguity about the timing of

those two actions: are removing and depositing tokens occur

simultaneously, which is referred to as atomic, or can tokens

dwell in the transition node, which corresponds to the so-called

three-phase firing [16]? Different versions of Petri nets treat

this issue differently (see the discussion on the subject in [20]).

It can be argued that the utility of separation between places

and transitions can stem from assigning distinct meanings

to the two types of nodes. For example, in the context of

workflow a transition is associated with an activity [25], while

a place with a condition of an entity. However, from the

general state-space perspective, places represents the states

of entities, and “activities” are only relevant as long as they

result in the changes of those states. In this context, the

presence of possibly multiple activities for a given entity

is unambiguously represented by transitions enabled for a

given token representing an entity of interest. If the activity

is completed, the corresponding transition fires the affected

token into a new place (as specified by the transition output).

B. Transitions

While joints do not increase modeling power when tokens

are not distinguishable, there are situations where the use of

the merging and splitting of tokens allows for more compact

models. Joints are analogous to the batching and duplicating

3both Lagrangian and Eulerian viewpoints were originally introduced by
Leonhard Euler, see for example [24]

ABRIDGED PETRI NETS—VITALI VOLOVOI 12

building blocks in process-interaction frameworks for discrete-

event simulations [26]. The relative strict restrictions on the

type of transitions (as compared to transitional SPNs) is by

design 4 to ensure that distinct identities of persistent tokens

are tracked in a transparent and repeatable fashion.

C. Modeling Interactions

Inhibitors provide a “zero-test” capability, and are known to

increase the modeling power of Petri nets equivalent to that of

a Touring machine, but they don’t change the modeling power

of Stochastic Petri Nets [16], [17]. Enablers are defined in the

opposite way, and are effectively test arcs [27]. Test arcs are

used in system biology modeling [28], where they are denoted

with directed dashed arcs; the notation used here is chosen to

emphasize the fact that enablers are the opposite of inhibitors.

Historically, inhibitors were viewed with a certain degree

of skepticism by the Petri net community, as they make tradi-

tional analysis of structural properties (such as reachability

analysis) more complex. However, the latest view of this

drawback of inhibitors is not as straightforward, since the new

algorithms can successfully handle inhibitors [29]. In addition,

there is a sufficient number of applications (e.g., modeling

failure and maintenance processes of complex systems) where

the state space of the problem is relatively well understood,

and the main utility of the modeling consists of quantitative

performance evaluation of the system.

Importantly, inhibitors and enablers provide direct means

for modeling unidirectional causal mechanisms of the modeled

processes. In contrast, joints (restricted equivalent of merging

and splitting common in SPNs) represent more symmetric

patterns of causality. The resulting diversity of means for mod-

eling causality enables more direct and faithful representation

of the causal mechanisms of the modeled systems.

There are multiple mechanisms that either implicitly or

explicitly imply interactions in traditional SPNs. Three of

those mechanisms are not used in APN:

1) Competition for firing from the same place when

“single-server” (or limited capacity) policies are used.

Single-server policy if the default policy in many ver-

sions of SPNs and it provides a compact representation

of simple queueing with random order. However, when

the tokens are distinguishable, this policy is of limited

use, and can be easily represented using the infinite

server policy combined with an extra place that only

allows one token at a time (by means of an inhibitor).

The use of infinite server (that effectively assumes token

independence) is critical for effective model of complex

systems. As a result, to avoid confusion (and lacking

standard distinguishing notations with the infinite server)

APN does not use a single-server (or limited capacity).

2) Arc multiplicities. In traditional Petri Nets places repre-

sent components, with the state space of the component

represented by the number of tokens in that place (place

marking). There are situations when the state change is a

“jump” so that state changes by more than one position.

4In other words, this is a feature not a bug.

For example, if the old state was represented by five

tokens, and the new state by three tokens, this change

is represented by the outgoing transition of multiplicity

two that fires two tokens simultaneously. In contrast,

in APNs the main mechanism for representing system

components is tokens, and they interact with transitions

individually: if a place has several tokens in a place

with an outgoing transition, each token has its clock

with respect to the transition. The state of the token can

be represented by its integer attribute (color), and upon

firing through a transition we can specify the increment

to that color (so if the color was five, this increment

can be set to -2, resulting in the token of color three).

Alternatively, if one desires to coordinate the firing of

tokens - and fire two tokens at the same time, this can

be modeled by providing an explicit construction with

an inhibitor that allows only two tokens in a place at a

time.

3) Marking dependence is effectively a “catch-all” means

to represent system interactions that are not modeled

otherwise. There is no standard graphical notations, so

the dependence cannot be captured visually. This is

fundamentally a programmatic way of capturing the

dependence, and it is avoided in APN.

D. Hierarchical Constructions

Modularization is a fundamental mechanism for dealing

with complexity. Separate model construction and perfor-

mance evaluation of individual modules provides the most

reliable implementation path, but it relies on the ability to

assembly the outputs from individual modules into a higher-

level model. This effectively replies a tree-like structure of

the model and the ability to characterize the outputs from the

tree “leaves” in a compact fashion. The former is not always

appropriate, and the latter can be challenging as well: see, for

example [30].

Multi-page models in APN provide a viable alternative to

fully modularized models, and the use of stacks of layers and

automatic color shifting provides additional convenience when

appropriate.

VI. CONCLUSION

This framework can be considered as a derivative of

Stochastic Petri Nets (SPNs) [13] that aims at retaining SPNs

versatility in terms of modeling power, while streamlining the

choice of the modeling building blocks. The visual clutter

and often confusing choices that are often perceived as the

major obstacle to the larger success of SPNs are reduced [20],

resulting in simpler and more transparent models that can be

built using only graphical interface.

The focus of the paper is on the modeling “front-end”, that

is the graphical interface with the user. Modern computing

capabilities make Monte-Carlo simulation techniques powerful

enough to render user interface to be the critical bottleneck

in constructing large-scale yet error-free stochastic models.

At the same time, the inherent hierarchy of the models

constructed using APN has a direct impact on the underlying

ABRIDGED PETRI NETS—VITALI VOLOVOI 13

event-scheduling architecture, enhancing the scalability of the

models from the computational perspective as compared to

process-interaction discrete event simulations. The models

developed in APN where the logic is implemented visually

look fundamentally different from the logic deployed in other

DES, as usually, once the logic exceeds the basic constructions

of the framework, the programmatic means are employed.

In some situations programmatic logic representation is

more efficient, but even in those scenarios APN can provide

a value as an alternative verification that the logic of the

model is indeed coded up correctly (in the spirit of N-version

programming [31]). For example, in the context of safety

and reliability, APN can provide a useful middle layer of

abstraction that is directly focused on the timing of events.

This would fill an important gap between high-level static

models (e.g., fault trees and reliability block diagrams) on on

the one hand, and detailed spatial simulation on the other.

The importance of nested complementary models of diverse

levels of abstraction is invaluable to ensure that the engineering

systems (e.g., Autonomous Vehicles) can be trusted to behave

as intended [32].

Finally, the completeness of the visual representation serves

an important self-documentation purpose: the picture of a

model combined with a table of transition properties uniquely

defines the model, fully independently of a specific computer

implementation.

REFERENCES

[1] C. M. Jenkins and S. V. Rice, “Resource modeling in discrete-event
simulation environments: A fifty-year perspective,” in Proceedings of

the 2009 Winter Simulation Conference, M. D. Rossetti, R. R. Hill,
B. Johansson, A. Dunkin, and R. G. Ingalls, Eds., 2009, pp. 755–766.
1, 8

[2] A. Petri, “Kommunikation mit automaten,” Ph.D. dissertation, Institut
für Instrumentelle Mathematik, Schriften des IIM, 1962. 1

[3] C. Petri and W. Reisig, “Petri net,” Scholarpedia, vol. 3, p. 6477, 2008.
1

[4] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-

ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989. 1
[5] D. A. Peled, Software Reliability Methods. Springer, 2001. 2
[6] C. Oliveira, R. Lima, H. Reijers, and J. Ribeiro, “Quantitative analysis

of resource-constrained business processes,” Systems, Man and Cyber-

netics, Part A: Systems and Humans, IEEE Transactions on, vol. 42,
no. 3, pp. 669–684, May 2012. 2

[7] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and

Practical Use. Berlin: Springer, 1993, vol. 1. 2, 5, 7
[8] W. Reisig, “Petri nets with individual tokens,” Theoretical Computer

Science, vol. 41, no. 0, pp. 185 – 213, 1985. 2, 5
[9] A. K. Schömig and H. Rau, “A Petri net approach for the performance

analysis of business processes,” University of Würzburg Institute of
Computer Science, Research Rep ort Series 116, 1995. 2

[10] P. von Hilgers and A. N. Langville, “The five greatest applications of
Markov chains,” in Proceedings of the Markov Anniversary Meeting.
Boson Books, 2006. 3

[11] B. Hayes, “First links in the Markov chain,” American Scientist, vol.
101, pp. 92–97, 2013. 3

[12] A. Kolmogoroff, “Zur Theorie der Markoffschen Ketten,” Mathematis-

che Annalen, vol. 112, pp. 155–160, 1936. 3
[13] M. A. Marsan, Stochastic Petri nets: An elementary introduction, ser.

Lecture Notes in Computer Science. Springer, 1990, vol. 424, pp. 1–29.
3, 12

[14] V. Volovoi, “Tutorial: Simulation with stochastic Petri nets,” in Winter

Simulation Conference, L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K.
Roeder, C. Macal, and M. D. Rossetti, Eds., Huntington Beach, CA,
December, 6—9 2015. 3, 8

[15] ——, “Correcting for non-Markovian asymptotic effects using Marko-
vian representation,” Arxiv, p. 1705.01070 [cs.CE], 2017. 4, 11

[16] G. Balbo, “Introduction to generalized stochastic Petri nets,” in Formal

Methods for Performance Evaluation, ser. Lecture Notes in Computer
Science, M. Bernardo and J. Hillston, Eds. Springer-Verlag, 2007, vol.
4486, pp. 83–131. 4, 5, 11, 12

[17] P. J. Haas, Stochastic Petri Nets. Modelling, Stability, Simulation. New
York: Springer, 2002. 4, 12

[18] S. K. Trivedi, Probability and Statistics with Reliability, Queuing and

Computer Science Applications, 2nd ed. John Wiley and Sons, 2002.
4

[19] V. V. Volovoi, “Modeling of system reliability using Petri nets with aging
tokens,” Reliability Engineering and System Safety, vol. 84, no. 2, pp.
149–161, 2004. 6

[20] F. Bowden, “A brief survey and synthesis of the roles of time in Petri
nets,” Mathematical and Computer Modelling, vol. 21, pp. 55–68, 2000.
6, 11, 12

[21] T. M. K. Roeder, “An information taxonomy for discrete event sim-
ulations,” Ph.D. dissertation, University of California, Berkeley, 2004.
8

[22] G. Pang and W. Whitt, “Service interruptions in large-scale service
systems,” Management Science, vol. 55, no. 9, pp. 1499–1512, 2009.
11

[23] H. Lamb, Hydrodynamics. Cambridge at the University Press, 1895.
11

[24] L. D. Landau and E. Lifshitz, Fluid Mechanics, 2nd ed., ser. Course of
Theoretical Physics. Butterworth-Heinemann, 1987, vol. 6. 11

[25] W. van der Aalst, “The application of Petri nets to workflow manage-
ment,” Journal of Circuits, Systems and Computers, vol. 8, no. 1, pp.
21–66, 1998. 11

[26] A. Law and W. Kelton, Simulation Modeling and Analysis, 3rd ed. New
York, NY: McGraw-Hill, 2000. 12

[27] S. Christensen and N. D. Hansen, “Coloured Petri nets extended
with place capacities, test arcs and inhibitor arcs,” in Application

and Theory of Petri Nets, ser. Lecture Notes in Computer Science,
M. Ajmone Marsan, Ed. Springer Berlin Heidelberg, 1993, pp. 186–
205. 12

[28] H. Matsuno, Y. Tanaka, H. Aoshima, A. Doi, M. Matsui, and S. Miyano,
“Biopathways representation and simulation on hybrid functional Petri
net,” Silico Biology, vol. 3, no. 3, pp. 389–404, 2003. 12

[29] G. Ciardo, “Reachability set generation for Petri nets: Can brute force
be smart?” in Application and Theory of Petri Nets, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2004, vol. 3099, pp.
17–34. 12

[30] V. Volovoi and R. V. Vega, “On compact modeling of coupling effects
in maintenance processes of complex systems,” International Journal of

Engineering Science, vol. 51, pp. 193–210, 2012. 12
[31] A. Avižienis and L. Chen, “On the implementation of N-version

programming for software fault tolerance during execution,” in IEEE

COMPSAC 77, 1977, pp. 149–155. 13
[32] P. Koopman and M. Wagner, “Toward a framework for highly automated

vehicle safety validation,” in SAE World Congress, no. 2018-01-1071.
SAE, 2018. 13

	Introduction
	Background
	Markov chains
	Stochastic Petri nets
	Using high-level extensions of Petri nets

	APN
	Persistent Tokens
	Transitions
	Modeling Interactions (Guards)
	APN Hierarchical Properties

	Examples
	Modeling with Directly Connected Places
	Car modeling
	Explicit matching of supply-demand pairs
	Customer Interruption

	Discussion
	Persistent Tokens
	Transitions
	Modeling Interactions
	Hierarchical Constructions

	Conclusion
	References

