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Abstract - The confluence of several technologies promises 
stormy waters ahead for reliability engineering. News reports 
are full of buzzwords relevant to the future of the field—Big 
Data, the Internet of Things, predictive and prescriptive 
analytics—the sexier sisters of reliability engineering, both 
exciting and threatening. Can we reliability engineers join the 
party and suddenly become popular (and better paid), or are 
we at risk of being superseded and driven into obsolescence? 
This article argues that“big-picture” thinking, which is at the 
core of the concept of the System of Systems, is key for a 
bright future for reliability engineering. 
 
Keywords - System of Systems, complex systems, Big Data, 
Internet of Things, industrial internet, predictive analytics, 
prescriptive analytics  
 
 

1. INTRODUCTION (SO CLOSE, SO FAR AWAY) 
It is not easy to be a reliability engineer: his (or much less 

likely, her) place does not neatly fit into the basic architectural 
design of the “house” of engineering. The main building 
blocks of this house are long, vertical, highly specialized 
pillars (that can involve a particular discipline, such as 
structures, or a particular module, such as a component), 
combined with the “roof” of systems engineering. 

The roof deals with the “big picture” and aims to combine 
the pieces of the puzzle provided by the individual disciplinary 
pillars. Systems engineering is positioned at the interface of 
management and engineering, and as a result enjoys a 
somewhat privileged position. It is recognized as an important 
competitive advantage for technology companies, so the latest 
trends are highly publicized and studied in business schools. 
Indeed, one may recall the “Six Sigma” of yesteryear, or 
marvel at the modern hype related to Big Data analytics and 
the Internet of Things (IoT). 

From the technical perspective, reliability engineering falls 
under the general umbrella of systems engineering (that 
includes overlapping fields such as industrial engineering, 
decision and management science, operational research, or 

more recently, analytics). It shares with the rest of the fields 
under this umbrella the need to abstract away most 
domain-specific information, and to use tools that are mainly 
domain-independent1. As a result, it increasingly shares the 
lingua franca of modern systems engineering—probability and 
statistics that are required to balance the otherwise orderly and 
deterministic engineering world. 

And yet, reliability engineering does not wear the fancy 
clothes of its sisters. There is nothing privileged about it. It is 
rarely studied in engineering schools, and it is definitely not 
studied in business schools! Instead, it is perceived as a 
necessary evil (especially if the reliability issues in question 
are safety-related). The community of reliability engineers 
consists of engineers from other fields who were mainly 
trained on the job (instead of receiving formal degrees in the 
field). This community is quite conservative; the field can 
hardly be described as trend-setting. Even if fashionable 
business trends directly affect reliability engineering (e.g., total 
quality management, or Six Sigma), the impact from the 
reliability engineering perspective is mostly reactive. 

There are multiple causes for this status quo, and the study 
of those causes would be the worthy subject of a separate 
article. Briefly, those causes are discussed next. 

 

2. HOW DID WE GET HERE? 
Modern reliability engineering can be traced back to the 

1950s, spurred by the complexity of emerging computer 
systems and military equipment [1]. In the social sciences there 
is an interesting notion of nested natural cycles; in particular, 
the Kondratieff cycle is related to the lifespan of a generation 

                                                             
1  Here the operative word is “mainly.” For example, in 
selecting the parametric failure distribution, distinguishing 
between underlying physical mechanisms can be critical (e.g., 
the weakest-link nature of a failure can point toward a Weibull 
distribution in the case of cracks, while corrosion spreading 
proportionally to the size of the existing damage could be 
modeled naturally using a lognormal distribution). The 
distinction can easily be lost given the proliferation of 
curve-fitting software (see the discussion of the resource curse 
later in the article). 
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of technological innovation. If a single biological generation of 
the work force spans about 30 years, the Kondratieff cycle 
spans two biological generations, or about 60 years [2]. 

The first half of the cycle is characterized by rapid 
innovation in and dissemination of the new technology, while 
the second half is characterized by the maturation of the 
technology and acquiring incumbent status. Our society as a 
whole is deemed to be in the middle of the Kondratieff cycle 
associated with the information technology cycle beginning in 
the middle of the 1970s [2]. However, it can be useful to look 
at the engineering world’s own Kondratieff cycle related to 
operations research that started a generation earlier [3]. It is 
difficult to overestimate the importance of technological 
innovation driven in large part by Cold War competition as 
well as the uniquely beneficial economic position of the 
United States after World War II. We will also note that the 
IEEE was founded in 1963. 

Two complementary forces largely shaped reliability 
engineering as we know it today: the separation of incentives 
between acquisition and sustainment (the principal-agent 
problem), and “small data” capacity constraint. Both of these 
effects are described in more detail next. (Spoiler alert: the 
relevance of both forces is greatly reduced, if not eliminated, in 
the current environment.) 

 

A. Principal-Agent Problem 
Let us consider a complex engineering system, such as a 

gas-fired power plant, or a train. The direct upfront cost of 
acquiring such a system usually constitutes about 30-40% of 
the total life-cycle cost, with the balance (60-70%) stemming 
from operation and support (O&S) costs 2 . However, the 
seller—such as the original equipment manufacturer 
(OEM) —usually has little or no incentive to reduce O&S 
costs. In fact, spare parts and repairs can be a significant 
source of revenue and profits for the OEM. This is commonly 
referred to in economics as the principal-agent problem. The 
customer (the principal) is subject to information asymmetry: 
he or she is more interested in knowing what O&S costs are 
going to be, while actually having less information about those 
costs compared to the agent (the OEM). For example, the 
OEM might not share reliability data with the customer. 
Complex systems are sufficiently unique (in terms of their 
configuration and operation profiles) to obscure the 
information signal to a large degree. 

Over the past 30 years or so, there has been a clear trend 
toward the customer preferring, and often demanding, the 
transfer of the risk associated with uncertain O&S costs to the 
OEM. On the other hand, businesses often perceive it to be 
advantageous for them to climb up the food chain and provide 
a service rather than a product (e.g., cloud computing); as a 

                                                             
2  For example, estimates for yearly U.S. defense O&S 
spending are about $150 billion, as compared to a $100 billion 
annual budget for procurement of new equipment [4]. 

result, long-term service agreements became the norm for 
complex engineering products, thus aligning the incentives for 
improving reliability for OEMs or their equivalents. 
 

B. Small Data Constraint 
In his famous article “More is Different” [5], P.W. 

Anderson discusses the pitfalls of a reductionist approach to 
dealing with complex systems, and the need for a hierarchical 
view with loosely coupled layers. The sheer number of entities 
that comprise a given layer, along with the complexity of their 
interactions, effectively preclude a “constructivist” bottom-up 
approach, and instead require a separate set of laws (rules) that 
govern the “emergent” behavior. It is therefore fruitless, for 
example, to construct biology laws using chemistry, even 
though individual entities do react in accordance with 
chemistry’s laws. 

Unlike natural complex systems, the principles of the 
operation of engineering systems are relatively well 
understood and documented, so long as a system operates as 
intended by its designers. As a result, for a single system there 
is a clearly defined hierarchy of “indentures” (that can have 
several layers) all the way down to an elementary part (such as 
a bolt), each carrying a specific functionality. If the operating 
conditions of an elementary part are known, it is relatively 
easy to understand the reliability of that part in isolation. This 
part can be subject to accelerated tests, and the data 
requirements for establishing such reliability are relatively 
modest. Standards and guidelines (such as MIL-HDBK-217 
and IEC-TR-62380) can be established and even maintained. If 
the reliability of parts is known and the interactions among the 
parts follow simple (linear) rules, the design life of a system 
can be inferred. 

How well this designed reliability matches operational 
reliability is altogether a different question, as here a 
well-ordered (mostly linear3) engineered world meets reality. 
This abstraction is, however, a necessary simplification, given 
the limitations of data collection and processing. In the past, 
attempts to look at more complex models of interactions among 
system components largely failed, due to a lack of data that 
could support those models and describe interactions more 
precisely. 

 

                                                             
3 Here linearity refers to a functional relationship among the 
system components from the reliability perspective. Of course, 
that does not preclude other non-linear relationships. For 
example, an air-conditioning system can have a temperature 
controller that maintains a desired temperature by using 
feedback, thus implementing a nonlinear relationship. One can 
refer to this as an inner-loop control. However, from the 
reliability perspective, one can abstract away the nonlinear 
subtlety of the operation, and focus on binary 
working/nonworking possible states of the controller: the 
outer loop does not have feedback. 
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However, one can imagine a different world, where the 
stress and temperature for that bolt are actually measured and 
recorded as a function of time throughout the operation of each 
system where such bolts are installed. One can also imagine 
that each bolt is constantly assessed in terms of its wear and 
presence of cracks. It is clear that in this alternative world the 
analysis tools would be different. 

In the case of a bolt, this alternative world is not a reality 
yet (and it might not be financially prudent to make such a 
world a reality even if it were technically feasible). However, 
for a large number of components in modern engineering 
systems, the historical footprint of some environmental (usage) 
conditions, as well as internal “health” conditions, can indeed 
be collected and stored. Furthermore, the resulting terabytes of 
data can be effectively processed using modern Big Data 
processes that enable effective parallelization, such as 
MapReduce and Spark. 

The implications of such condition-based maintenance are 
not always straightforward, especially in the current 
“transitional” period where operational strategies often outpace 
corresponding reliability analysis. Paradoxically, in some 
critical systems, the introduction of condition monitoring can 
weaken the incentives for understanding reliability issues. 
Indeed, consider a safety-critical item in a traditional 
engineering system. The designed reliability of this item has a 
direct impact on the safety of the system, and therefore a 
significant effort is made to evaluate its reliability: if the 
reliability of the item is less than designed, the safety risks 
increase. This situation can be contrasted with a modern system 
that provides condition-monitoring capabilities for the same 
safety-critical part. Instead of a periodic inspection of the part, a 
warning signal is sent to a maintainer indicating that the part 
needs a replacement. So, the safety of the system is ensured, 
but reliability can suffer, because the safety and reliability 
issues get decoupled, and therefore there is less incentive to 
make the part reliable. 

In general, the trend is toward the increasing sophistication 
of operational technology (OT), providing a flexible and 
automated means of reconfiguring a system in order to provide 
uninterrupted service to the customer. As OT strategies become 
smarter, reliability assessment must keep up and take into 
account more sophisticated “outer loop” control strategies. In 
this context, using the reliability methods of the past is often 
insufficient for assessing the reliability of modern complex 
systems that act more and more like the complex natural 
systems discussed in the beginning of this section. 

In summary, traditional reliability engineering managed to 
defy the messy nature of complex systems by confining 
uncertainty to component-level behavior and adhering to 
simple outer-loop control logic. But, quoting a classic, we are 
not in Kansas anymore. 

 
 

3. BIG DATA IS WATCHING YOU 
It is natural to take the hype generated by Silicon Valley with 
a grain of salt. Yet a closer look at the hype surrounding Big 
Data clearly reveals that “there is some ‘there’ there.”4  A 
confluence of several technologies that allow collecting, 
storing, and processing data at the scale that was unthinkable 
not so long ago is quite remarkable. To date, the applications 
that are most noticeable (and not necessarily in a good way!) 
are in the consumer area (such as custom-tailored on-line 
advertisements and flagging unusual credit-card activities). 

However, both large engineering companies and major IT 
companies take notice and invest in what effectively amounts to 
a long-term commitment to building infrastructure for the 
Internet of Things (IoT) in general, and in the context of 
complex systems, for the Industrial Internet (or, as General 
Electric refers to it, the “Internet of really important things”) [8]. 
Old-school companies like Lockheed Martin are busy hiring 
freshly minted computer science graduates as data scientists, 
who are often blissfully unaware of their engineering 
ignorance. 

The long vision of the IoT promises a futuristic view that 
includes an automatically adjusted thermostat designed to help 
alleviate the peak electricity load on a hot day based on 
user-specified preferences. That vision might be realized some 
day, or instead we might use aesthetically pleasing home 
batteries courtesy of a (competing) vision form Elon Musk, 
that will smooth the demand in a different way. What is 
important, however, is that in the short term one of the most 
prominently featured use cases for IoT is a cost-effective 
improvement in the reliability of engineering systems [9]. 

So, if you are a reliability engineer, not only is Big Data 
watching you, it might also be after your job. It is hard not to 
notice how formerly independent companies (e.g., Relex, 
ReliaSoft) that provided reliability tools are being bought up by 
companies that aim at providing a “cradle-to-grave” digital 
tracking of engineering systems. 

Of course, as we were told by politicians of all stripes, 
including John F. Kennedy, Al Gore, and Condoleezza Rice, in 
Chinese the symbol for crisis is the same as the symbol for 
opportunity5. And the community of reliability of engineers is 
indeed capable of correcting itself. For example, nowadays, 
Bayesian statistics gets a bit more respect than it used to [11]. 
 

4. SYSTEM OF SYSTEMS (SOS) TO THE RESCUE 
It can (and should) be argued that reliability engineering was 
ahead of the curve in terms of providing a structured and 
balanced view of an uncertain world. On the one hand, 

                                                             
4  The original expression “there is no ‘there’ there,” 
indicating a lack of substance, is from Gertrude Stein’s 
description of Oakland in the 1930s in comparison with San 
Francisco [6]. The expression was also used by Admiral 
Gehman, the chair of the Space Shuttle Columbia accident 
investigation board, to describe the lack of technical expertise 
at NASA in safety-critical areas [7]. 
5 Not really [8]. 
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deterministic logic was used to describe the interrelationships 
among system components that followed the designers’ intent; 
on the other hand, the “irreducible” (also called aleatory) 
uncertainty was confined to the risk that some of the 
individual components might fail. 

Such a divide-and-conquer strategy worked well for 
relatively simple engineering systems that were explicitly 
constructed in modular fashion. As engineering systems 
become more complex, their structures become more similar 
to those of natural systems. Importantly, there is compelling 
evidence that nature favors modularity as well [12]. More 
specifically, both natural and engineering complex systems are 
likely to be “nearly decomposable” into individual modules or 
layers. The coupling is “weak” in the sense of the rate of 
information exchange, but it is of critical importance, and it 
most certainly involves feedback mechanisms.  

A recent large-scale quantitative study was aimed at 
understanding the nature of the successful forecasting of 
complex events [13]. Remarkably, one of the critical paths 
toward good forecasting was constructing an informal 
structured model, what was referred to as “fermi-izing” the 
problem (after Enrico Fermi, who advocated the method 
among his students)[14]. To this end, a European effort in 
so-called “process mining” is of great interest [15]. In contrast 
to data mining that deals with “black box” modeling (i.e., 
lacking any recognized internal structure), process mining 
aims at automatic learning of the model’s structure appropriate 
for the modeled process (based on the historical “traces” of 
event sequences). 

In other words, the ecosystem of reliability engineering is 
changing, and it behooves the reliability engineering 
community to adapt to the new challenges.  In particular, a 
better understanding of “weak” couplings and their efficient 
modeling is of great importance to reliability engineering in 
general, and at the very crux of the SoS problem. 

Another related important aspect of SoS is the need to keep 
the “big picture” in mind and maintain the correct level of 
abstraction. As computational tools become increasingly more 
powerful, it is always tempting to create large detailed models. 
This can be called a “resource curse”6 as unfortunately, such 
models are of very limited general value. 

Keeping the big picture in mind and avoiding getting stuck 
in silos is another quality of reliability engineering that is of 
universal and increasing value (see for example [16]), and 
again SoS issues fit right in. In fact, it is plausible that 
big-picture skills are the least likely to be replaced by a 
computer. 

To illustrate the fundamental nature of the changes to the 
reliability engineering ecosystem, let us consider perhaps the 
most familiar emergent behavior of molecules in a volume of 
gas: if the system is closed, a stable thermodynamic 
equilibrium is reached, and a macro property (temperature) 
statistically represents the average molecular velocities (i.e., 
individual microproperties). The temperature provides a useful 
characterization of the behavior of a very large number of 
entities: it is a Dow Jones for molecules. 

Classical engineering systems are designed to be as stable 
as a simple volume of gas. Instability is “designed out,” and 

                                                             
6 The term is originally used for countries blessed with 
natural resources that actually hold the countries back in their 
development. 

reliability effectively measures the level of success in avoiding 
the instability. In contrast, complex systems must balance 
some degree of stability with the ability to adapt to changing 
environment.  Here is an analogy of a medium for a signal: If 
the medium for a signal is too stable, the signal decays; if it is 
too unstable, the signal amplifies and grows too big. To be 
effective in propagating the signal, the medium should obey 
the Goldilocks principle—it must be just right. The resulting 
balance is called “equilibrium away from equilibrium,” “the 
edge of chaos,” or more technically, self-organized criticality 
(criticality being a technical term for this “edge” or boundary 
between stable/static and unstable/chaotic) or SOC [17].  
SOC is a universal feature of complex systems. 

These notions from theoretical physics seem esoteric and 
irrelevant to reliability engineers. In fact, they are of critical 
importance in general, and particularly so in the context of 
SoS. Next, some of these connections are briefly discussed. 

As complex system controls become more sophisticated, a 
system increases its ability to maintain equilibrium at the 
desired level. When the limits of the system’s control are 
finally exceeded, the loss of equilibrium is sudden and drastic.   
For example, let us consider a computer network that has a 
primitive routing algorithm. When one of the nodes (or links) 
fails, performance (measured, for example, by packet delays) 
degrades. If more nodes fail, the performance will continue to 
gradually degrade. In physics this is referred to as a 
second-order phase transition. 

Let us now instead consider a “smarter” routing algorithm 
that is very efficient in rerouting the packets around the failed 
node or link. The end effect is that for an outside observer 
there will be no perceptible degradation of performance until 
the system is saturated, and there is a sudden onset of drastic 
congestion. In physics this corresponds to first-order transition. 
A classical example of such “masking” of the onset of the 
problem by means of a sophisticated control is putting out 
small fires, and therefore increasing the chances for a large 
fire. Needless to say, this masking can be potentially 
dangerous, as it can create a false sense of security. 

Yet another intriguing example of this phenomenon is the 
role high-frequency trading (HFT) can potentially play in 
suppressing trading volatility under normal circumstances 
while facilitating large jumps during seemingly innocuous 
small disturbances (as occurred during the “Flash Crash” in 
2010) [18]. 

Understanding and predicting such “extreme” events is a 
critical issue for SoS, and there is some encouraging research 
in this area. The prevailing wisdom about complex systems is 
that SOC dictates a power law distribution for event sizes.  In 
log-log scale the frequency of events plotted against their 
magnitude is a straight line. Earthquake magnitudes, city sizes 
(Zipf’s law), and internet connections all follow this 
distribution. 

These power laws are also called scale-free due to the 
absence of the characteristic scale of the phenomena. In other 
words, extreme events are not any different than smaller 
events, except in just being bigger. This leads to the “black 
swan” hypothesis that extreme events are fundamentally 
unpredictable. An opposing view contends that there are 
certain important “pockets of predictability” where the 
emergence of extreme events is driven by global (on the 
system scale) synchronization [19]. As a result, these extreme 
events can possess distinct signatures that can be recognized 
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in advance. Further research on this system-wide risk 
phenomenon in the engineering context (rather than 
theoretical physics context) would be quite welcome indeed. 

 

5. CONCLUSION 
Technologies associated with Big Data bring fundamental 

changes to reliability engineering. Reliability engineers should 
stop worrying and learn to love Big Data. The reliability for 
SoS lies at the core of the most exciting and timely challenges 
that face the reliability community today. Addressing these 
challenges requires maintaining a big-picture view and 
avoiding getting stuck in silos. Then the new technological 
capabilities will allow more successful tackling of end-to-end 
metrics (e.g., delivering Systems of Systems functionality), 
and planning for undesirable emergent behavior. However, 
there are cultural and generational barriers that need to be 
overcome to make the renewal of reliability engineering 
successful. 
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