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As increasingly sophisticated collision avoidance systems are developed, assessing their
effectiveness becomes both more important and challenging. In this paper, an application
of a new analytical procedure is presented. While Monte Carlo simulations can capture
the underlying stochastic processes, they require a very large number of simulations to
estimate rare events with sufficient accuracy. The advantage of the analytical methods is
not only computational efficiency and higher precision, but also increased transparency of
the contributing risk factors, which is particularly beneficial given the uncertainty about
the input parameters and the associated need of sensitivity studies. The proposed method
relies on discrete (non-homogeneous) Markov chains that are solved in closed form to
evaluate system-level risk. This method provides an efficient means for modeling dependent
subsystems without explicit state-space representation of individual components. Instead,
Markov chains for non-repairable portions of the model are semi-inverted and the resulting
transition rates are used in the full Markov model. The developed procedure is first
illustrated with an example that exhibits the salient features of the underlying process,
and is then applied to Advanced Airspace Concept (AAC) in order to demonstrate the
method’s capabilities and to compare the results with those of published Monte Carlo
simulations.

I. Introduction

Collision avoidance systems are critical for the safety of airspace, especially given the expectations of
a significant increase in operation density in the future. Another related but distinct factor that increases
the importance of collision avoidance systems is the issue of integration of Unmanned Air Vehicles (UAVs)
into the national airspace. The targeted levels of safety as a function of air traffic density have been
used to provide a baseline characterization (i.e., without taking into account any mitigation action) of the
collision risk,1 thus providing clear motivation for mitigation strategies in UAV operations. Quantification
of the overall (system-level) safety impact of collision-avoidance systems requires an understanding of the
relevant interactions among the various layers of protection against collisions, as well as of the frequencies
and patterns of encounters that can lead to collisions. The latter (collision encounter problem) has been
extensively investigated,2, 3 but the challenges of the former problem are also significant, and this paper is
devoted to addressing those challenges. One can divide the overall problem of estimating the risk of collision
into three steps:

1. Determining the conflict frequency;

2. Given the conflict, determining the chances of resolving it by a deployed collision avoidance system
(the focus of this paper);
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3. Determining collision chances, given Near Mid-Air Collision (NMAC), which is the failure of the colli-
sion avoidance system to resolve a conflict.

It is a common and generally a reasonable assumption that the calculations involved in these three steps are
mutually independent (at least in the first approximation).

From the system reliability and safety modeling standpoint, a collision-avoidance system relies on time
redundancy, as there are several consecutive attempts to detect and resolve a conflict. This time redundancy
is supplemented by functional redundancy, as the time before the conflict is separated into distinct phases
(layers) with the conflict resolution task assigned to distinct subsystems. This functional separation is moti-
vated by the increased urgency of the task combined with less uncertainty about the conflict. So, as a general
rule, as time progresses, conflict resolution should be simpler (less complex) in order to facilitate reliability,
and can be simpler, as it deals with less uncertainty. In addition, increasing the diversity of the protective
layers provides some protection against common-cause failures that can defeat the intended redundancy.
Combining structural and time redundancy is not unique to collision avoidance, and is well recognized as
providing a more efficient means of protection than each type of redundancy alone in other applications, such
as in designing fault-tolerant computer systems to negate the effects of transient faults.4 While detection
becomes more efficient as time progresses (as the uncertainty about the trajectories decreases), there is the
potential for accumulation of failures that hinder both successful detection and resolution of those conflicts.

There are several methods for modeling the system reliability of time-redundant systems, including the
use of semi-Markov processes5 or universal generating function technique.6 Therein, the variability of the
duration of individual tasks necessitates the use of continuous-time Markov processes, commonly used in
reliability modeling of renewable systems.7 Those methods are not directly applicable to the modeling of
automated collision avoidance systems, as they don’t allow the presence of accumulated permanent faults.
Indeed, permanent faults violate the assumption of semi-Markov processes requiring for a transition from a
state to be fully determined by the current state and the holding (sojourn) time in that state. In contrast,
for the problem of conflict resolution, the duration of each attempt is of secondary importance, but the
number of those attempts is not known a priori, so discrete Markov chains suffice. On the other hand,
fault-tree analysis (i.e., analysis based on static Boolean algebra)8 can deal with permanent failures, and
provide important initial insights,9, 10 but have some known limitations for modeling dynamic scenarios that
involve dependent events.11 Combined use of Markov analysis and Fault Trees has been previously suggested
in the literature, e.g., dynamic fault trees,12, 13 where traditional fault trees are augmented with special gates
representing specific dynamic scenarios, e.g., functional dependency. Effectively, dynamic fault trees serve
as pre-processors for Markov models, which are constructed internally and automatically. In contrast, the
proposed method does not require full representation of state space of non-repairable portions of the system;
instead only relevant conditional probabilities of dependent subsystems are calculated.

If dynamic interactions are confined to a single layer of protection, then a decoupled (hierarchical) analysis
is possible, as advocated in the context of sense-and-avoid systems:14 an inner loop that includes a collision
encounter model and relies on Monte Carlo simulation combined with an “outer loop” analysis based on
fault trees. However, if different layers share common failure modes, neglecting this coupling in the fault-
tree analysis can lead to nonconservative risk estimates. In order to account for this coupling, the scope
of Monte Carlo simulation can be extended to encompass several layers of conflict avoidance. However,
increases both the complexity of the simulation models and the number of the simulation runs needed to
capture rare events. While importance sampling can provide an increase in the convergence rate,15 this
improvement is problem-dependent.

In what follows, the developed procedure is first described on a conceptual example and then applied
to a specific application, Advanced Airspace Concept (AAC),16 with the issues regarding the generality of
the procedure addressed as appropriate. The selection of the application is motivated by the availability
of the detailed description of an automated avoidance system safety model conducted using Monte Carlo
simulation.17, 18 The goal of this paper is not to evaluate the assumptions made for AAC,17, 18 but to
demonstrate an analytical method that can capture the dynamic interactions without the need of lengthy
Monte Carlo simulations for systems with the mixture of non-repairable or Markov (when state transitions
only depend on the current state and time) components.
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Figure 1. State space for single phase (left) and two-phase (center and right) scenarios

II. Conceptual example

Let us assume that at moment t1 = 0 the system is fully operational, and consecutive attempts to detect
and resolve the conflict are made at times tk = δ(k − 1), k = 1 . . . n = 20. At each time step 1 ≤ k ≤ n,
probability of successful detection and resolution is the same, p = 0.4. If failures of the system are neglected,
the probability of failure is pf = (1− p)20 = 3.656× 10−5: there are 20 independent attempts to resolve the
conflict, and each time the chances of failure to resolve the conflict is 1− p.

Next we introduce the possibility of permanent system failures that preclude conflict resolution. The
system is operational at the beginning of the conflict resolution, but failures occur with the constant failure
rate λ = 0.001/δ, so that the chance of system being operational at step k is R(k) = R(tk) = exp [−λ(k − 1)].
As a result, the number of attempts for conflict resolution is not known a priori. Fig. 1 (left) depicts a discrete
time Markov chain for this process with three possible states: (1) the conflict has not been resolved and the
system is operational; (2) the conflict has not been resolved and the system has failed (no future resolutions
are possible); and (3) the conflict has been resolved. Transitions described in the figure allow the assembling
of transition matrix with elements Qij corresponding to the conditional probability of transitioning to state
i at the next step, given the current position j (each column adds up to one).

Q =







(1− p)(1 − λ) 0 0

(1− p)λ 1 0

p 0 1






(1)

An initial state of the system π(0) = {1, 0, 0} allows the calculation of the probabilities of the final state
after n time steps π(n) = Qnπ(0). Specifically, 1− π3(n) will correspond to the chances of failure to resolve
the conflict.

Since conflict resolutions occur at discrete times, instead of following the process step-by-step, it is
possible to evaluate system failure by exploring disjoint events that lead to failure based on the number of
resolution attempts k made (k = 1 . . . n). Indeed, k < n attempts implies that i) all attempts made were
unsuccessful (with the probability (1 − p)k), and ii) the system was operational up to step k, but failed
before the next step, k + 1, was possible (the chances of that are R(k)− R(k + 1)). At the last step n, the
failure to detect only occurs if all n attempts fail, which is expressed as R(n)(1 − p)n. Therefore, the total
probability of failure is given by

pf = R(n)(1 − p)n +

n−1
∑

k=1

[R(k)−R(k + 1)] (1− p)k (2)

Both methods yield identical results, which in the considered numerical example renders pf = 1.53× 10−3.
Both procedures apply to any system with non-repairable components, if the system’s reliability R(k) is
properly calculated (e.g., by means of Boolean algebra), and, for Markov states, the transition rate is a

standard hazard rate λ(k) = f(k)/R(k), f(t) = − dR(t)
dt

. If this rate or the detection probability p varies
with step k, then the procedure remains the same, but the final state is calculated as π(n) =

∏n

i=1 Q
iπ(0).

Next, let us consider a scenario with functional redundancy where two phases with different systems are
utilized with an overlap between the two systems X and Y : in the first phase, the functionality is provided by
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either of the two subsystems U and V , and in the second phase, subsystemW replaces subsystem U . Now, the
Markov model has two additional states (see Fig. 1, center and right): state 4 for system X is down and Y up
(X̄

⋂

Y ), while state 5 corresponds to the opposite situation (X
⋂

Ȳ ). If subsystem X failed early, subsystem
Y gets only engaged at time stepm. No assumptions about the types of failure distributons are made for each
subsystem. Considering the non-repairable part in isolation, the probabilities for each step can be determined
using Boolean algebra: P̂1(k) = RV (k) + (1−RV (k))RU (k)RW (k), P̂4(k) = (1−RV (k))RU (k)(1−RW (k)),
and P̂4(k) = (1−RV (k))(1−RU (k))RW (k). Here hats over the probabilities are used to emphasize that no
renewable portion of the system is considered, corresponding to setting p = 0 in Fig. 1 (center and right).
Three balance equations can be written (the fourth one is redundant):

P̂1(k + 1) = P̂1(k)(1 − h1(k)− h2(k)− h3(k)) (3)

P̂4(k + 1) = h1(k)P̂1(k) + (1− h5(k)) P̂4(tk) (4)

P̂5(k + 1) = h2(k)P̂1(k) + (1− h4(k)) P̂5(tk) (5)

These equations could be used to calculate the discrete transition rates, but there are five unknowns,
h1(k) . . . h5(k), and only three equations. However, h4(k) = λW (k) and h5(k) = λU (k) (since in both
cases subsystem V has failed), so hi(k) can be determined (i = 1 . . . 5) using Eq. 3-5, and the result can
be used to assemble matrices Q(k) in accordance with transitions depicted in Fig. 1 (center and right). In
general, there might be more than one possible configuration for the degraded state, and in this case the
total transition rates have to be weighted in accordance with the probability of each degraded configuration.
Traditionally Markov processes are used to evaluate states’ probabilities as functions of time given known
transition rates; in contrast, the current procedure relies on Boolean algebra to calculate the probabilities of
states for subsystems subject to permanent failures, and the result is used to calculate transition rates.

Fig. 2 compares the numerical results for system failure probability as a function of probability p of single-
conflict resolution for two different set of assumptions. First, components are considered to be independent
for each phase, and second, the common-cause failures are taken into account. Here λU = λW = 0.1/δ
and λV = 0.001/δ. For verification purposes, the results of 10 million Monte Carlo runs using Stochastic
Petri Nets19, 20 are also provided. If the two phases are independent, both the Boolean method for the
final states evaluated for each phase separately (Eq. 2) and the Markov procedure yield identical results.
However, evaluating the final states for dependent components is impossible without knowing the terms of
type P (Y (k)|X(m)) (the conditional probability that system Y is operational at time step k given that
system X was operational at time step m), effectively requiring the tracking of all the intermediate steps
(as done by Markov modeling). Furthermore, while numerical values are provided for illustrative purposes
only, the challenges of estimating common-cause effects can be observed: if for low values of the probability
of single-conflict resolution p those effects are negligible; for high p the predictions vary by two orders of
magnitude. The relative error of Monte Carlo simulation degrades from a fraction of a percent for low p to
up to 15% for higher values of p, as expected when dealing with rare events. However, this level of accuracy
might be acceptable, and for this small problem 10 million Monte Carlo runs takes less than a minute on a
modern laptop. Nevertheless, realistic models will require more computational effort, and a 15% error rate
might be important if two configurations are compared where simple variance reduction techniques, such as
common random numbers, are not directly applicable. The presented analytical models not only provide
computational efficiency and transparency, but they can also serve as alternative and relatively independent
means for verifying modeling accuracy.

III. Application to AAC

Successful conflict resolution requires the appropriate equipment to be operational, and successful tra-
jectory generation and conflict detection are also necessary. There are several layers of conflict avoidance,
each invoked in sequence as time progresses. There is an overlap in terms of the equipment used by each
layer, so that the permanent failures of layers are not independent. Furthermore, within each layer, several
attempts are made to resolve the conflict. In the case of AAC, there are three such layers: Autoresolver
(AR), Tactical Separation-Assured Flight Environment (TSAFE), and Traffic-alert Collision Avoidance Sys-
tem (TCAS): first AR is engaged (from 8-20 minutes until 3 minutes before the conflict), followed by TSAFE
(from 3 minutes until 1 minute), and TCAS (at 1 minute before the conflict). There is an additional (final)
level of safety (visual avoidance by pilots) that is applied last, and its efficiency is provided by the fraction
of conflicts that were unresolved by the first three layers but resolved by the fourth layer (so its evaluation
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Figure 2. System failure as a function of probability of single conflict resolution p
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Figure 3. Three layers of conflict resolution in AAC (the fourth layer, visual avoidance, is not depicted).

is decoupled from the evaluation of the first three layers).
At t1 = 0 all subsystems are failure-free17, 18 and there is the first possibility of identifying the conflict

(this is the initial state A1, which is T = 8 min away from the conflict). At every time step tk, k = 1 . . . n,
an attempt is made to resolve the conflict; n is the total number of those attempts for all layers (phases).
For ACC we have n = 15 and tk+1 − tk = 0.5 min for k = 1 . . . n − 1. The following sets of intermediate
states are considered: A1 . . . A10 for AR, B11 . . . B15, E11 . . . E15 for TSAFE, and C for TCAS. In addition,
there are two “final” states, F and S, corresponding to system failure and success, respectively.

To minimize the complexity of the risk analysis, it is important to identify subsystems (modules) that
are as large as possible without obscuring the coupling among the subsystems. Specifically, the common
components that make the performance of layers dependent require a separate treatment. In the case of
AAC,17 the following coupling mechanisms are identified:

1. Mode S transponder on each aircraft. Its functionality is critical to all three conflict-avoidance systems,
so T denotes the transponder subsystem (corresponding to the transponders of both aircraft). Based
on the assumptions made in Ref. 17, such a failure causes the entire collision avoidance system to fail.

2. Resolution Delivery (RD). There are shared components between AR and TSAFE contributing to RD
functionality; however, the chances of the loss of RD functionality during the AR phase are negligible.
Indeed, the chances of RD functionality in AR configuration for the whole flight can be calculated21 as
≈ 5.76× 10−15. Noting that the overall risk of system failure is on the order of ∼ 1× 10−6 — 1× 10−9,
this failure mode can be neglected. This is explained by quadruple redundancy at the component level
for the AR phase. As a result, the failure of RD needs to be considered only for TSAFE, and therefore
this source of coupling between different phases can be neglected. Such prescreening of the contributing
risk factors (at the subsystem rather than component level) is important to simplify the analysis.
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3. The speaker that announces the resolution to the pilot in both the TSAFE and TCAS systems. We
will denote this subsystem as K, so that its failure occurs when a speaker system on either of the two
aircraft fails The purpose of separating the functionality of this subsystem stems from the fact that
while TSAFE can operate with one of the speakers down, TCAS cannot (here we follow the assumptions
made in Ref. 17 for consistency, although an argument can be made that TCAS can facilitate collision
avoidance even if only one of the aircraft reacts). In order to make this distinction, we introduce
separate states during TSAFE operation (Bk if both speakers are operating, and Ek otherwise).

This use of compressed state-space representation of conditional states for two subsystems (as described
in the conceptual example) can be contrasted with a brute-force approach that would rely on explicit
consideration of the possible states of all components of these two subsystems. In the considered
model there are five components and 25 = 32 states.21 When both systems are down, the occurrences
of further failures are irrelevant, so there are actually fewer distinct states, and symmetry considerations
can be used to further reduce the state space. Still, this approach is prone to state-space explosion,
and has poor scalability for problems with a larger number of components.

4. Location functionality for both aircraft is common to AR and TSAFE (subsystem L). The mode
S transponder participates in location as well, but it is treated separately, so subsystem L excludes
the mode S transponder. Finally, subsystems of AR and TSAFE that related to neither location nor
transponder, are denoted as R and Z, respectively.

As a result, the distinct subsystems R,Z,K,L, T provide the required level of granularity to capture all
the coupling from the equipment perspective. At the last step of TSAFE, E15 implies failure (and so the
corresponding probability needs to be added to the failed state), while B15 is the same as C. State C implies
that TCAS is required (and both speakers and both transponders are operational). A full description of the
corresponding transition matrices is provided in Ref.21

A. Discussion

The system safety structure and parameters of the AAC model17 were used as an illustration and a ref-
erence point for constructing the corresponding analytical model, so this work should not be considered
as an endorsement of that model (and as a result, the endorsement of the corresponding risk estimation).
However, this can be considered a starting point for constructing meaningful models, which can be used for
developing safety cases for particular collision-avoidance implementation, along with the requirements for
the performance characteristics of the individual components. To this end, several initial observations can
be made:

1. The probability of detection is based on squaring the probability of not deviating by half of the
distance.17 Based on purely geometric considerations, the probability of detection is significantly
higher. In the extreme case of a head-on collision, one can derive an analytical formula using normal
cross-track error distribution and the Euclidean difference. It can be ascertained that the currently
used formulae provide conservative estimates. However, there is a possibility of a correlation between
the errors (common bias) both in time and between the two aircraft in conflict. The former would lead
to the increased chances of system failure.

2. Commission error: for example, a “false positive” situation where the system mistakenly identifies
a conflict; this is potentially an important consideration due to the reduction of the time available
for correcting the error. Similarly, resolution of an existing conflict can be executed incorrectly. The
issue is related to the “Byzantine fault tolerance.”22 A more detailed modeling of conflict resolution is
needed to estimate the associated probabilities.

3. At time t1 = 0, all systems are assumed to function properly; this needs to be revisited, as the risks
during the recovery process are not trivial (requiring a separate model).

4. The failure rate of the ADS-B Mode S transponder is obtained from Ref. 10, with the source citing
a value one order of magnitude higher, and based on an exposure of 20 minutes (and not two hours).
Apparently, this reduction of the failure rate is due to a credit for redundancy. Due to the importance
of this parameter on the overall failure of the system, this issue should be further investigated and the
redundancy of the transponders must be modeled explicitly.
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Figure 4. Sensitivity of the probability of ACC failure to the failure of AC Mode S transponder; log-log scale
is used.

In accordance with Monte Carlo simulation,17 out of 10 billion runs there were 1180 cases where the three
layers of AAC failed (829 of those cases were resolved using the last fourth layer). This translates into
the chances of failure of all three systems to be 1.180 × 10−7. Those results can be compared with the
numerical results obtained analytically using the developed procedure. If only the transponder is allowed
to fail (all the other subsystems cannot fail), then the total probability of failure is 1.117 × 10−7, which
is very close to the result reported in Ref.17 As expected, transponders dominate the overall failure rate
(due to the lack of redundancy). Upon the completion of the first phase (9 steps of AR), the AAC system
will fail with the probability 1.04315 × 10−7, while the chances that the system will transition to TSAFE
is 7.0173× 10−4. After all three phases are completed and TCAS has been engaged, the chance of failure
of AAC is 1.548 × 10−7. Figure 4 depicts the sensitivity of the probability of ACC failure with respect to
the probability of AC Mode S transponder failure, which is the main driver of system failure. The latter is
varied over the two orders of magnitude, and depicted using the log-log scale with the results from Ref.17, 18

shown for comparison as well.

IV. Conclusions

An analytical procedure has been presented for evaluating the reliability of several layers of collision
avoidance. A distinct feature of the developed procedure is its ability to model dependent subsystems
by employing a novel semi-inversion of the Markov model. Specifically, a submodel that corresponds to
the nonrenewable part of the system is evaluated using Boolean algebra, and the expressions obtained
for subsystem state probabilities are used to infer the transition rates among those states. Finally, those
transition rates are supplemented by the inclusion of recurrent events, resulting in a complete state-space
representation.
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