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Abstract

The Tenth International Conference on Mathematical Methods in Reliability,
MMR 2017, held in Grenoble, France, during July 3-7, entailed a panel discussion
entitled “Is Reliability a New Science?” with Mark Brown, Regina Liu, William
Meeker, Sheldon Ross, and Nozer Singpurwalla as panelists. Bill Meeker also dou-
bled as a chair and as a moderator of the panel. The panel discussion was spawned
by the recent appearance of a book by Professor Paolo Rocchi, Docent Emeritus
of IBM, titled “Reliability is a New Science: Gnedenko was Right”, published by
Springer in 2017. The panel discussion was well attended and enthusiastically re-
ceived, and could serve as a forerunner to other such panel discussions at future
MMR conferences. This paper presents some elements from the lively debate gen-
erated by this discussion.

Keywords: Hypotheses, Chance, Probability, Propensity, Significance Test, Quan-
tifiability, Reproducibility.

1 N.D. Singpurwalla on: “Is Reliability A New Sci-

ence?”

Nozer D. Singpurwalla, The City University of Hong Kong, Hong Kong

1.1 Introduction: The Philosophy of Science

The term “science”, as a seeker of truth, carries a century old aura of legitimacy and
respectability. But every endeavour of research cannot be called a science. Fields such
as biology, chemistry, physics, and their spinoffs constitute the “hard sciences”, whereas
fields such as economics, psychology, and sociology are known as the “soft sciences”. This
distinction has to do with two broad philosophical issues, articulated by the Austrian-
British philosopher Sir Karl Popper, as objectives and method ; see Popper [1]. The
objective of the natural sciences is to devise and refine approximate descriptions or models
of physical universe by:
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i) asking a question;

ii) formulating a hypothesis;

iii) testing the hypothesis, and then either rejecting it or provisionally accepting it until
new evidence forces its modification or its rejection.

Per the Popperian view, science grows by framing hypotheses and subjecting them to
increasing severity. Progress is achieved by the fact that each successive hypothesis has
to pass the same test as its predecessor, and at least one of those that its predessor has
failed. This view is in contrast with the older view wherein science was about framing
laws derived by induction from a multitude of particular and observational facts. To
Popper, generalizations come first and the observations used to test the generalizations
come next. From Popper’s viewpoint, this then is the philosophy of science.

1.2 The Method of Natural Sciences

The method of natural sciences has the following characteristics:

a) Clearly defined terminology. We all know what constitutes a cell, but what does
carelessness or sexism mean?

b) Quantifiability (or Measurability). One can measure density, velocity, or toxicity.
But how can one measure happiness, inspiration, and generosity?

c) Controllability. A scientifically rigorous study maintains direct control over as many
of the factors that influence outcome. This is to ensure reproducibility, be it in
Alaska or Zanzibar.

d) Reproducibility. A rigorous science is able to reproduce the same result over and
over again. The failure to reproduce enables one to disprove a finding; i.e. proof by
contradiction.

e) Predictability. A rigorous science is able to make testable predictions. For exam-
ple, Murray Gelman’s prediction of the “quark” particle before its existence was
confirmed.

1.3 Is Mathematics a Science?

Were science be viewed broadly as “systematic and formulated knowledge” then mathe-
matics would qualify as a science, though not as a hard (or natural) science.

All the same, since mathematics provides a language used by natural scientists to
describe and discuss the universe, there is a link between mathematics and the natural
sciences. But the link is not enough, because the ultimate arbiter of correctness in the
natural sciences is empirical evidence, whereas the ultimate arbiter in mathematics is
proof and logic. Indeed, any hypothesis which cannot be falsified by empirical data is
not scientific, and that any scientific theory is a hypothesis which is only provisionally
acceptable at any given time, that is waiting for new empirical evidence to falsify it. By
contrast, the conclusion of a theorem, obtained by a deductive approach, is always and
forever true, whenever its conditions (or hypotheses) are satisfied.
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Thus mathematics is not in the same league as a natural science, and it ought to
be classified with the arts and humanities, though some claim that mathematics cannot
be classified as an art either, because it is not accessible enough to be labeled as art.
All this goes to suggest that probability theory as a branch of mathematics cannot be
classified as a science either, but it can be justifiably claimed that, like mathematics,
probability is a language of science. Quantum theory is an example, at least to Einstein,
whereas Bohr and Heisenberg would be inclined to label probability as a natural science.
Anscombe and Aumann [2] claim that depending on how one interprets probability, as
a plausibility (or reasonableness of belief or of expectation) or as a random or chance
(physical) phenomenon, it can belong to logic or to physics, respectively.

1.4 What About Statistics: Is it a Science?

The term “statistics” appeared for the first time in Sir John Sinclair’s 21 volume treatise
between 1791 and 1799, entitled Statistical Account of Scotland [3]. Sinclair’s work was to
assess the political strength of a country via its inhabitant’s happiness. However, Sinclair
did not like the term Political Arithmetic, used by William Petty in 1690 [4], in the
context of reasoning by figures upon things relating to government, and so he annexed
the German word statistics which pertained to a kind of political inquiry. Thus as it now
stands statistics is an artificial word which stands for anything dealing with data.

Inferential statistics has as its genesis in the work of Sir Ronald Fisher (who was
tutored by Keynes and Russell), and whose signal contributions were: significance testing
and the notion of a null hypothesis, randomization and the design of experiments, and
the theory of estimation for implementing the principle of induction as a philosophy of
science. Fisher’s work was preceded by that of Bayes and Laplace whose main goal was
to advocate probabilistic induction as a philosophical principle for assessing cause and
effect. Fisher’s work was followed by that of Neyman and Pearson who improvised on
Fisher’s significance test by introducing the notion of an alternative hypothesis, errors
of commission and omission, and confidence limits. This in turn was followed by Wald’s
work on sequential analysis, losses, and utilities. But Fisher remains firmly as the true
creator of inferential statistics, and whose motivation was to facilitate the methodology
of science to achieve the objective of scientific inquiry. All the above, and despite the fact
that Fisher’s significance tests played a key role in asserting the presence of the Higgs
Boson, statistics is an enabler and a technology of science, like engineering. Per Popper’s
criteria, it does not qualify as a science, per se.

1.5 Can Reliability be Labeled a Science?

For reliability to be labeled a science, it should necessarily satisfy the requirement of an
unambiguous and clearly accepted terminology. This is not the case, because:

a) To many, practically every reader of this article, reliability is a probability, and
probability is not uniquely defined nor can it be directly measured.

b) To the likes of Popper, de Finetti, and Lindley, reliability is a propensity or a chance.
(Singpurwalla [5]).
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c) To the mathematician Koopman [6], reliability would be an intuitive concept prior
to objective experience.

d) To Kolmogorov, Bartlett, and de Groot, reliability would be an undefined primitive.

This means that reliability fails the terminology and quantifiability aspect of the sci-
entific method.

But reliability also fails the other attributes of the hard sciences, because the subject of
reliability entails a craftful combination of engineering (not a science), mathematics (the
language of science), and statistics (the technology of science). Thus reliability, useful
and valuable as it is, leans on the application of science, the philosophy of science, the
language of science, and the technology of science to facilitate decision making in the
face of uncertainty. In conclusion, despite the great and wonderful Academician Boris
Gnedenko’s wishful thinking, reliability is an essential technology; it is not a basic nor a
natural science!

2 V. Volovoi on: “Is Reliability A New Science?”

Vitali Volovoi, Alpharetta, Georgia, USA

2.1 Introduction

Despite the recent populist backlash against science, the material and moral benefits as-
sociated with science—and the prestige—are indisputable. The mere use of the word
“science” does not guarantee the legitimacy of that use (e.g., Christian Science and Sci-
entology1). Following the panel discussion at the MMR 2017 conference, the merits of
reliability’s claim on being a new science are discussed.

2.2 Scientific methods

Since the time of Aristotle, a distinction has been made between two types of knowledge:
intuitive and informal vs. more deliberate, “demonstrative” (i.e., scientific) knowledge. In
Russian and other Slavic languages, the word for science, nauka, literally means “learned.”
In some languages there is a related, albeit more general, distinction between things per-
ceived via intimate awareness and things learned: e.g., kennen vs. wissen in German and
connâıtre vs. savoir in French (Barzun [8]). Blaise Pascal in Pensées further expanded
this distinction by juxtaposing “intuitive temperament” (esprit de finesse) with “geomet-
rical temperament” (esprit géométrique); the former case deals with ideas and perceptions
that are not amenable to exact definition, while in the latter case the mind works with
exact definitions and abstractions of science and mathematics.

Originally, the “demonstrative” nature of scientific knowledge ought to have been
derived using formal deduction as in Euclidean geometry: from the first principles (basic,
foundational propositions that are deemed self-evident and absolute). As a result of
the scientific revolution (and with notable contributions from Francis Bacon), another,

1Scientology is, effectively, science squared, combining for extra gravitas both Latin and Greek origins
(the sin that originally hampered the legitimacy of the word “scientist”). The word “scientist” eventually
won out over a simultaneously suggested alternative, “nature-poker” (Whewell [7]).
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empirical path to scientific knowledge has been developed. This path relies on observation
and experiments, and entails a gradual evolution of partial truths that are repeatedly
refined and clarified in the light of new evidence. Deduction is also utilized, but the first
principles are not carved in stone and are subject to refinements as well.

This second path grew in stature over the years, to the point that mathematics, which
used to be a paragon of scientific knowledge, was either excluded from the branches of
science, or admitted only with the qualifier “formal” (as opposed to the “natural” sciences
that have risen to the top in their importance).

The ability to predict has become the key distinguishing feature of true science. This
has led to the concept of falsifiability (Popper [1]): if a theory predicts Event A, and Event
A fails to occur, the theory is deemed falsified (and in need of modification). However,
the occurrence of Event A does not verify the theory, but merely provisionally spares it
from falsification until the next test. A theory that can explain any event (e.g., Freudian
psychoanalysis2) is not falsifiable, has zero predictive power, and is therefore not scientific.
From this viewpoint, mathematics itself (as opposed to its application within a different
“true” science, say physics) does not deal with predictions of events in the real world.
deductions within mathematics’s own domain are either true or false, and thus don’t fit
the scientific method’s paradigm of perpetual improvement. Thus, mathematics is not
real science.

Coming to the defense of poor mathematics is not that hard, however: the world of
mathematics is so vast and complex that not all conjectures can be immediately verified
(and hence can be falsifiable in the interim). For example, the four-color theorem3 was
formulated in 1852 by Francis Guthrie, while computer-assisted proof was obtained only
in 1977 (by ruling out 1,936 patterns of maps) by Kenneth Appel and Wolfgang Haken
(Wilson [10]). The last Pierre Fermat theorem was conjectured in 1637, but not proved by
Andrew Wiles until 1994. Thus, in full compliance with the scientific method, the four-
color and last Fermat conjectures were considered to be provisionally true but falsifiable
for 125 and 357 years, respectively.

For a reader with a particularly long-term view who considers a century as a mere
blink of an eye, there is Kurt Gödel’s incompleteness theorem and its conclusions about
the inherent limitations of formal axiomatic systems. This theorem proves the existence
of true but unprovable statements. If Gödel’s theorem feels too esoteric for reliability,
consider the lack of analytical solutions for non-Markovian system reliability models or
maximum likelihood estimates given the non-convex nature of the underlying optimiza-
tion problem. In all these scenarios, perfect solutions are unattainable, and the gradual
evolution of approximation techniques is par for the course.

At the same time, the ancient viewpoint of the superiority of deduction is not com-
pletely dead either. In fact, the book that prompted the panel discussion at MMR 2017
calls for the development of a deductive foundation to reliability, thus upgrading it to a
“real” science (Rocchi [11]). On balance, it seems fair to conclude that both deduction

2Karl Popper personally knew Alfred Adler, a pupil of Sigmund Freud, and shared both Jewish roots
and German-language culture with him as well as with Karl Marx, Freud, and Albert Einstein. By
highlighting the inverse relationship between the explanatory and predictive powers of a theory, Popper
contrasted the scientific value of Einstein’s work with the lack of such value in the “theories” promoted
by the other three (Popper [9]).

3The theorem states that any map on a plane can be colored with four colors, so that any two countries
sharing a border may always be colored differently.
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and empirical iteration are equally valid scientific methods, often used in combination. In
any case, since reliability ultimately concerns itself with behavior in the real world, and as
such can be viewed as applied mathematics, objections related to any lack of experimental
connection are moot. However, this suggests another question, discussed next.

2.3 Science vs. technology

As with the distinction between intuitive and demonstrative knowledge, the distinction
between theoretic knowledge (epistêmê) and pragmatic “craft” (technê) can be traced to
Aristotle. The two distinctions can be considered different facets of the same belief in the
innate superiority of “pure” knowledge unencumbered by any connection to reality. This
bias is deeply entrenched in Classical civilization, and is credited by Peter Drucker [12]
for the decline of the British Empire; it can also be detected via the further stratifica-
tion within the sciences, with physics crowned as the most “fundamental.” As Ernest
Rutherford put it (in accordance to Lev Artsimovich, an academician of Soviet Academy
of Science), scientists are “divided into two categories—physicists and stamp collectors”
(Lang [13]).

On the surface, this might disqualify reliability from consideration as a science, since
it mostly pertains to man-made systems. One can argue that, as artificial systems grow
in complexity, they resemble natural systems more, especially at the aggregate, network
level (West [14]). Engineering designs can be considered as special “memes,” which are
the informational version of genes (Dawkins [15], Frenken and Nuvolari [16]). As a re-
sult, the similarities between the failures of engineering and of biological systems are
certainly worth exploring. Analogies in analyzing engineering maintenance vs. medical
records (e.g., the effectiveness of cancer-screening procedures) are obvious, but it is also
important to understand some of the differences. For example, in contrast to engineering
systems, biological systems have local continuous processes related to rejuvenation and
recycling e.g., autophagy. Rocchi [11] points out a study that explores the difference in
the trends for human mortality rates and hazard rates for engineering systems (Gavrilov
and Gavrilova [17]). The analysis is based on representing a human being as a redundant
system with initial defects. This is an interesting idea, but representing a human body as
a non-repairable system flattened to a single-level hierarchy appears to be too simplistic.

Given the universal nature of the hierarchical composition of complex systems (whether
natural or man-made, Simon [18]), developing dynamic multi-state system reliability mod-
els that more realistically reflect at least top-level hierarchy of a human body can be a
worthwhile undertaking. It would also be interesting to see whether some of the coarse-
grained observations from complexity science can be reproduced using such models. For
example, one curious fact is that all mammals have roughly 1.5 billion heartbeats during
a lifetime, with humans fully following that rule right up until the 19th century, and
then pulling ahead to 2.5 billion with the advent of modern medicine. (Remarkably, the
improvement of the average life span left the upper bound virtually unchanged, West
[14].)

Regardless of the success of applying some of the reliability theory to natural systems,
the distinction between epistêmê and technê has never been absolute, given the role of
technologies in scientific discoveries (such as improvements in lens technologies that led to
telescopes and the heliocentric view in astronomy). Since the late 19th century, a conscious
effort has been made to reverse the direction of influence and use “pure” science to drive
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technologies (Barzun [8]). As a result, fields like materials science (that evolved from
metallurgy) and computer science have emerged. The common theme appears to be the
bestowal of the title of science upon a field with high status (as perceived by society at
the moment). The latest example supporting this empirical rule is data science, a field
that is close to reliability (as revisited in the conclusions to this paper). In the context
of data science, the distinction between the “passive” and “active” approaches to the
natural world is reduced to a single step in classifying analytics (from “predictive” to
“prescriptive”).

2.4 Falsifiability of probabilistic statements

Predictions in reliability are probabilistic in nature, which makes the question of falsifia-
bility tricky for two reasons. First, there is no consensus regarding the interpretation of
the meaning of “probability”; second, there is the difficulty of interpreting the truth of a
probabilistic prediction, especially as it pertains to a single event (the so-called decidabil-
ity problem). Fortunately for reliability, quantum mechanics also relies on probabilistic
statements, which prompted Karl Popper to treat both issues at length (Popper [1]).

Similarly to Andrey Kolmogorov, Popper interprets the probability by introducing an
axiomatic definition of probability that can be manipulated independently of the assigned
meaning. The decidability issue is resolved in a statistical sense based on a reliance on
methodological rules for empirical evidence (e.g., adhering to significance levels that are
considered sufficient in the imperfect real world, not unlike the precision of deterministic
measurements). An additional restriction is made regarding the salience of reproducibility:
the methodological rules should forbid the predictable and reproducible occurrence of
systematic deviations.

This last point is nicely illustrated by the recent developments in economics (a.k.a.
“the dismal science”): while the presence of deviations from the “rational choice” model
(which assumes that individuals always make rational decisions) has been long recognized,
the lack of actionable alternatives made the assumption of rational choice the only game
in town. This changed when Daniel Kahneman and his co-workers [19] revisited Pas-
cal’s dichotomy by separating “slow” (deliberate), rational thinking from intuitive “fast”
thinking. Importantly, they demonstrated that intuitive thinking is prone to systematic
biases.4

Popper’s use of a “reference class” for a single event provides a prescient view on treat-
ing both frequentist and Bayesian views of probability in a unified utilitarian fashion. For
example, a reference class can correspond to a particular model (or to a set of models used
in a particular prediction). While each hurricane is unique, one can scientifically compare
the performances of European and American hurricane prediction models for multiple
hurricanes, regardless of the specific nature of the models. Similarly, the popularity of the
website FiveThirtyEight is based on the aggregate performance of the models that Nate
Silver and his colleagues employ.

Moreover, the probabilistic model itself does not need to be fully scientific to be sci-
entifically tested. Philip Tetlock and his colleagues [21] have run a large-scale series of
experiments where they compared “reference classes” corresponding to specific individuals

4See also Ariely [20], as well as the work of Richard Thaler, who recently was awarded a Nobel prize
in Economics for his work on the subject.
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who made multiple predictions and tried to understand the traits of so-called “superfore-
casters” who consistently outperform their peers. In this case, a model is the combined
ability of a person (or a group of people) to make predictions. Digging a bit deeper, one
can compare the performance of two models within the same person—this being one of
the main messages of the Kahneman’s book [19]: when making singular decisions in life,
it pays to understand the aggregate performance of slow (deliberate) vs. fast (intuitive)
thinking, even for unique events where the impact is immeasurable, since the counterfac-
tual conditional (i.e., reproducing the same decision point using a different mental model)
is impossible.

Furthermore, the benefits of overruling one’s intuition for singular events are more
dramatic because the impact is hard to measure: presumably, intuition evolved based
on analogous experiences in the past, so the rarer the event is, the less relevant are the
prior experiences coded in fast thinking. (Or, as Richard Thaler quipped, the theory
proclaiming that people learn from their mistakes, and thus approach rational behavior
is good for “buying milk”, Lowenstein [22].)

In summary, what is good enough for quantum mechanics is good enough for reli-
ability,5 but with one important caveat: the time scale of the statistically significant
testability of a model matters. The slower the feedback, the harder it is to gauge the
predictive power of a theory.

2.5 Conclusions: the social side of reliability

The importance of reliability’s role in society is likely to be the determining factor as
to whether reliability can be considered a science, as otherwise it fits the bill. However,
it faces headwinds, some if which affect all sciences, as well as some that are specific to
reliability. The former put the entire scientific ecosystem under stress, and can be traced
to two mutually reinforcing sources:

• The “democratization” of information exchange due to the Internet revolution that
has, along with its multiple benefits, severely diluted the quality of content and
reduced the incentives for future creation of quality content. The end result is
a less coherent community, and hence more transactional (i.e., more short-term)
interactions.6

• A more general increased belief in the invisible hand leading to the reduced role
of government, especially in the United States and the United Kingdom. Using
Thaler’s terms, science is not the same thing as buying milk: its benefits are too
long-term to be appreciated by the markets. The negative impact of short-termism
on research has been recently documented, especially in publicly traded companies
that are motivated by quarterly reports (Jacobs and Mazzucato [24]).

5Actually, reliability can claim some advantage: it is relatively clear why the described phenomena
must be treated probabilistically. In fact, if anything, there are too many sources of non-determinism
(including variability in manufacturing processes and usage profiles). In contrast, there is no consensus
as to whence probabilistic effects appear in quantum mechanics (Weinberg [23]).

6An analogy can be made with game theory: the “prisoner’s dilemma” results in inferior outcomes for
all participants, while cooperative strategies appear only in the iterated versions of the game, i.e., when
long-term effects are taken into account.
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One can argue that both trends are related to the type of market failure called “the
tragedy of commons,” but regardless of the label, the phenomena are real and signifi-
cant. Importantly, both trends are particularly pertinent to reliability and, especially,
safety (safety events are rare, so that the time scale of feedback is even greater than for
other scientific endeavors). In the United States, the reliability community appears to
be shrinking in size (for example, at RAMS, the main reliability conference, the number
of participants has roughly halved in the past twenty years). A similar trend can be
observed with Google searches for the word “reliability”: the frequency has halved in the
past 13 years. As professor Mark Brown, a member of the panel discussion at MMR 2017,
recalled, one of the previous panels was entitled “Is Reliability Dead?”—and the issue has
not exactly gone away.

At the same time, data science and the technologies related to the Internet of Things
(IoT) create both threat and the opportunity for reliability (Volovoi [25]). Data science
deliberately emphasizes correlation over causation, therefore minimizing the importance
of deduction. This might seem to make data science less scientific and more like super-
efficient stamp collecting. But at the moment, the upside of the scalability of domain-
blind (black-box) data-driven solutions outweighs the lack of causal understanding. When
managing failures within the IoT, knowledge about causal relationships of engineered
systems, and the scarcity of failure data make purely data-driven solutions objectively
inferior. This provides an opening for reliability that traditionally combines causal and
data-driven models, but taking advantage of this opening requires a concerted effort on
behalf of the reliability community.

Scientific progress is viable only in the presence of a thriving community that enables
the free exchange of information. This has been true at least since the founding of the
Royal Society of London for Improving Natural Knowledge in 1660 (of which Sir William
Petty, the father of social statistics, was one of the 35 founding members). Reproducibility
implies transferability (portability) of knowledge, so communication is critical. Members
of the scientific community understood that they were in the same boat, in stark contrast
to their contemporaries engaged in alchemy who hoped to literally strike gold in solitude.
In the area where reliability and the IoT intersect, the combination of the fragmentation
of the reliability community combined with the IoT gold rush seems to lead to behavior
more reminiscent of alchemy than science. This can be risky in the long run. The role of
community is particularly important for reliability and safety, as it can effectively broaden
“reference classes”, thus improving the pace of feedback (and hence the pace of progress).

In summary, adopting the Red List for the classification of endangered species, the
category “vulnerable” seems to be an appropriate status for the field of reliability today:
there is still time to react, but we are not yet out of the woods.

3 M. Brown, E.A. Peköz and S.M. Ross on: “Is Re-

liability A New Science?”

Mark Brown, Columbia University, USA
Erol A. Peköz, Boston University, USA
Sheldon M. Ross, University of Southern California, USA
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3.1 Reflections on new directions for an ancient science: relia-
bility and blockchain

Reliability is not a new science; it is as ancient as life itself. The field of reliability, however,
must evolve to face the current challenges of the day. For the field to flourish, we should
not only write for one another using our specialized vocabulary. Rather than looking
inside, we should look outside trying to help develop methodology essential to other areas
and disciplines. This entails recognizing application areas where we have something useful
to contribute. One of the most promising new areas today where reliability is a linchpin is
the blockchain technology that is the foundation for many new rapidly growing businesses.
This technology holds the promise for new ways of facilitating cooperation and trust
without requiring a centralized authority. Many new businesses that have the potential
of disrupting established industries rely on the reliability of the blockchain. Though the
blockchain technology has many uses, its application to digital currencies is not without
controversy since some people believe it has the potential to disrupt government agencies
and the banking sector. We next outline a few of the technical problems in this setting
where expertise from the reliability community could create great synergy and value for
both the blockchain and reliability communities.

Bitcoin (Nakamoto [26]) is a digital currency that relies on the blockchain technology
and maintains the integrity of a ledger of transactions using the so-called proof of work
consensus protocol. At the heart of the security of this protocol is a pseudo random
number generator developed by the National Security Agency that takes any alphanumeric
string as its “seed” and outputs a number between zero and one that appears uniformly
distributed. The random number generator is considered non-invertible, meaning that
it’s impossible to know which seed will give a particular output without simply trying it.
Many agents, called “miners,” compete to earn a reward by being the first to discover a
number that when appended to the current blockchain and the current batch of pending
transactions and used as a “seed” in the random number generator, will yield a random
number that’s below some very low predetermined threshold. (Actually, only the output
value from the previous block is appended, in lieu of the entire blockchain, and essentially
uniquely specifies the entire previous blockchain’s contents. That’s why it’s called a
“chain.”) When this discovery is made, the current batch of pending transactions, called
a “block”, is considered sealed and the miners move on to trying to seal the next block.
As such, the number of attempts until a given miner finds a correct number follows a
geometric distribution, and thus the time required is roughly an exponential distribution
with rate proportional to the computational power of the miner. Miners who are the first
to seal a block receive a reward after a “cooling off period” provided their sealed block is
part of the longest chain known so far, measured in terms of the number of sealed blocks.
This incentivizes miners to only work on the longest known chain so far, and to publicize
discovery of sealed blocks. It also incentivizes other miners to immediately accept a sealed
block and continue working on the next block. Once a miner publicizes that the current
block has been sealed, it’s very easy for everyone else to immediately check this by using
the pseudo random number generator. Anyone is allowed to be a miner; there are no
restrictions on who may do this.

Since the number required to seal a block depends on the set of all previous transac-
tions, if a dishonest miner ever alters a previous transaction it will be obvious to everyone
that the subsequent numbers are not the correct ones necessary to seal the subsequent
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blocks. A standard model is that each miner discovers the correct numbers to seal the
block according to an independent Poisson process with rate proportional to the com-
putational power of the miner, and elementary properties of the exponential distribution
imply that the chance a given miner earns the next reward is also proportional to her
rate. Because storage of the chain of transactions is decentralized and held separately
with each miner, the agreed-upon rule is that the longest chain of transactions is the
authoritative one. A problem occurs when a dishonest miner tries to alter a previously
sealed transaction (say, N blocks in the past) and then reseal all subsequent blocks until
they have the longest version of the chain, which would then be considered as authorita-
tive. This is called the “double spend” problem because the dishonest miner could spend
the same money twice. Since the honest miners continue to extend the original version
of the chain, the dishonest miner will only be able to catch up if the number of events
in her Poisson process ever gets at least N events larger than the number of the events
in the superposition of the honest miners’ process. Calculating this probability under
different assumptions is crucial to evaluating security of different mining protocols and
lies squarely in the wheelhouse of the reliability theorist.

As a more concrete example of the meaning of “double spend”, suppose you have
only 23 bitcoin in account 123 and you buy a car for 2 bitcoin from a dealer who has
account 456. The car dealer of course waits for the transaction to appear as sealed into
the blockchain (usually people wait until several blocks have passed) before he lets you
drive away with the car. When you drive home, you can go to the previous block and
insert the transaction “account 123 pays 23 bitcoin to account 789” where 789 is a second
account that you control. Suppose you have fast computational power and you can seal
several blocks quickly to catch up and get ahead of the miners on the main chain, but
you don’t include the transaction to the dealer. Once you then publicize your chain to
everyone, since it is the longest they will accept it and continue building on your chain.
The transaction to the dealer will still be in the pending pool but everyone will notice
that it is an invalid transaction because there is not 23 bitcoin in account 123 anymore.
Subsequently, no one will ever include it in the blockchain. This means you have the car
and you get to keep the 23 bitcoin, and you can spend it again. That is why it is called
“double spend.”

Many solutions have been proposed to the “double spend” problem described in the
previous paragraph, and the necessity of reliability calculations in evaluating potential so-
lutions is essential. To reduce the chance a dishonest miner can catch up, some researchers
have suggested changing the protocol so that the times that a miner seals the next blocks
follows a more general renewal process rather than the Poisson process (Bissias and Levine
[27]). If the inter-event time has a smaller coefficient of variation than the exponential
distribution, the chance of catching up can decrease and thus the reliability will increase.
In this case, calculation of the reliability of the protocol involves determining the chance
that one renewal process with a larger mean inter-renewal time ever exceeds a second
renewal process with a smaller mean by more than N events. There is, however, economic
trade-offs. Miners receive a reward for each block they seal and they have the incentive to
pool their resources if being a small miner does not pay. This could eventually destabilize
the reliability of the block chain since larger miners will have more than a proportional
increase in rewards. Computing these probabilities lies within the field of the reliability
theorist and is essential for understanding the tradeoff between reliability and economic
stability.
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Another phenomenon where the reliability theorist can play a role involves the analysis
of the so-called selfish mining attack (Eyal and Sirer [28]), which is a possible attack on
the reliability of the block chain. Here an agent keeps sealed blocks secret from the rest
of the community so that other people will waste their resources mining a shorter chain,
which will not end up being part of the authoritative block chain. The selfish miner
keeps her mined blocks secret until the group of honest miners is almost about to catch
up, and then she releases the blocks so that everyone else’s work has been wasted. This
waste of resources slows down the mining process and essentially lowers the computation
power of the honest miners, and therefore allows the dishonest miner to have an unfair
advantage. The theory goes that honest miners will realize this and eventually switch
over to being selfish miners, and this destabilizes integrity of the block chain. Computing
the chance that various selfish mining strategies succeed, under different assumptions on
the distribution of time it takes to mine a block, is of paramount importance and involves
calculations within the purview of the reliability theorist.

It may seem at first glance that the selfish mining attack may harm the attacker. If
they are secretly mining a block, someone else may seal the block and the selfish miner
may not get credit for it. An important part of the selfish mining strategy is that if
you notice someone else seals the block, you quickly release your block so it appears that
both happened at exactly the same time. This then means about half the miners may
try to mine on your block and the other half on the other block and you have roughly
a 50% chance of having your work count towards a reward. The big value in selfish
mining comes if you get more than one block ahead of the honest miners: then you can
always just release your chain to the public as soon as the rest are just about to catch
up and are one block behind. It can be shown that this strategy hurts the honest miners
slightly more than it hurts the selfish miner and can create just barely enough wasted
work by honest miners overall that they will want to do selfish mining. It won’t profit
a selfish miner in the short term but long term it means that there is an incentive for
everyone to collaborate with the selfish miner and split the proceeds, which would give
the selfish miners a majority of computational power and they thus would be able double
spend. People believe that this has not really happened because it would hurt the value
of bitcoin, and people who are big players have the incentive not to hurt the value.

Much of the reliability theory of the coming century will naturally involve adversarial
systems. This is a natural consequence of the connectivity and decentralization of our
society. During the last century when we were not as connected, much of the uncertainty
and hazards in systems were due to Mother Nature, aging, and defects. With advances
in technology, systems are much more secure from those threats but face new classes
of strategic adversarial threats. The burgeoning field of cyber security is a particularly
timely example. The field of reliability is well equipped to face these challenges and show
leadership in these new areas, but it must be open-minded to studying new models and
developing new theory. This new direction for the field of reliability theory will bear
much fruit and be key to helping human society evolve to better cooperate and flourish
peacefully.

4 W.Q. Meeker on: “Is Reliability A New Science?”

William Q. Meeker, Iowa State University, USA
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Nozer Singpurwalla argues that Reliability is not a science. But of course, because
there are differing definitions of science, one can also argue the opposite. I once worked
on a project with a very smart lawyer. He told me that he is always willing to allow the
opposing lawyer write the contract if he can write the definitions. If one uses a definition
that admits Mathematics as a science, then clearly deriving bounds for reliability functions
and proving closure results of the reliability functions for different kinds of systems would
be contributions to the science of Reliability. Under the same definition, it is easy to
argue that Statistics is also a science.

Although I am defined as a statistician by education and more than 40 years of employ-
ment in the Statistics Department at Iowa State University, my views of reliability have
been deeply influenced by my experiences and interactions with engineers and statisticians
working with engineers in industry. Three years of summer internships at GE Corporate
Research and Development (as it was known back then) while in graduate school led to
40-plus years of collaboration with individuals in that organization (initially with Wayne
Nelson, but subsequently with Gerry Hahn and Necip Doganaksoy) and numerous visits
and consulting engagements with GE engineers. From 1978 to 1995 I spend approximately
10 weeks every summer visiting Bell Laboratories working with engineers and statisticians
on applications in telecommunications reliability. Since my book Statistical Methods for
Reliability Data with Luis Escobar was published in 1998 [29], I have taught on the or-
der of one hundred reliability short courses, mostly to engineering audiences, and have
been involved in many consulting projects, working with engineers and scientists to apply
statistical methods in non-standard reliability applications.

What is indisputable is that Reliability is a highly-quantitative engineering discipline
that depends heavily on many areas of science including probability and statistics, but also
relying on materials science, physics, and chemistry. In the most challenging and impor-
tant applications that I have worked on, companies made sure that they had appropriate
experts from all of the needed disciplines working together on the team.

Unlike most survival analysis applications in medical statistics, the analysis of engi-
neering reliability data almost always involves extrapolation. We extrapolate in time when
we predict the fraction failing during a three-year warranty period, based on six months
of field data. We extrapolate in temperature when we estimate a life distribution at 25 C,
based on accelerated tests at 50, 60, and 70 C. We extrapolate from laboratory testing to
make predictions about field performance. Some Statistics 101 books state emphatically
“You cannot extrapolate.” But the truth is that reliability engineers extrapolate all of
the time. Although it is not always the case, the justification for the needed extrapolation
should be and often is detailed knowledge of the failure mechanism and the correspond-
ing chemistry or physics of failure. Thus Reliability, as a discipline, depends on and has
benefited from fundamental scientific work that has been done in the areas of physics,
chemistry, and materials science.

During my entire career, I have said that I am too young to get deeply involved
in philosophical arguments and that I would rather be involved in solving statistical
problems. Thus I will end my discussion here.
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