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Abstract

The paper addresses the dynamic modeling of degrading and repairable complex systems. Emphasis is placed on the convenience of

modeling for the end user, with special attention being paid to the modeling part of a problem, which is considered to be decoupled from the

choice of solution algorithms. Depending on the nature of the problem, these solution algorithms can include discrete event simulation or

numerical solution of the differential equations that govern underlying stochastic processes. Such modularity allows a focus on the needs of

system reliability modeling and tailoring of the modeling formalism accordingly. To this end, several salient features are chosen from the

multitude of existing extensions of Petri nets, and a new concept of aging tokens (tokens with memory) is introduced. The resulting

framework provides for flexible and transparent graphical modeling with excellent representational power that is particularly suited for

system reliability modeling with non-exponentially distributed firing times. The new framework is compared with existing Petri-net

approaches and other system reliability modeling techniques such as reliability block diagrams and fault trees. The relative differences are

emphasized and illustrated with several examples, including modeling of load sharing, imperfect repair of pooled items, multiphase missions,

and damage-tolerant maintenance. Finally, a simple implementation of the framework using discrete event simulation is described.

q 2003 Elsevier Ltd. All rights reserved.
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1. Background

A quick glance at the product line of any major vendor of

system reliability software unequivocally leads to the

following observation: presently, reliability block diagrams

(RBDs) and fault tree analysis (FTA) are the only two

frameworks widely available at the modeling phase for

quantitative assessment of reliability metrics. Recent

enhancements of these standard tools include more and

more dynamic features, such as dependent events and spare

modeling, which seemingly obviate the need for alternative,

essentially dynamic, tools. In the past, it was necessary to

resort to Markov chains in order to model some intricate

dynamic interactions among failure modes. However, direct

modeling of Markov states is unfeasible for all but very

small-scale problems due to state-space explosion, and

stochastic Petri nets (SPNs) can be employed as a compact

preprocessor for creating larger Markov models in an

automated fashion.

SPNs were proposed as a potentially attractive

alternative for reliability modeling shortly after they

were introduced more than two decades ago [1] and

have been periodically proposed ever since [2–4].

However, modern dynamic FTAs [5–7] or some of the

advanced RBDs can be also utilized in a similar fashion.

Perhaps this can explain the fact that SPN applications to

system reliability are mainly restricted to research, with

few notable exceptions [8]. Ironically, an additional

reason for this might be the very success of Petri nets

in recent years, which has led to the proliferation of

various ‘extensions’ of SPNs. The multitude of existing

variations of Petri-net formalism might have excellent

modeling capabilities, but lack a unified standard; as a

result, what is referred to as SPNs can vary drastically

from one application or paper to another. Needless to say,

such ambiguity can be quite confusing for reliability

practitioners, and by and large SPNs are perceived as a

technique that is perhaps powerful but cumbersome and

somewhat arcane. It is quite characteristic that SPNs are

often absent from the list of compared techniques for

system dependability (a measure of system performance

that includes reliability, availability, and safety) [9,10].

Similarly, SPNs are only briefly mentioned (if at all) in

books on the subject.
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On the other hand, SPNs have evolved into a powerful

and mature field of operational research [11,12] that enjoys

wide applications in fields such as optical and computer

networks [13] and flexible manufacturing systems [14]. To

this end, there were commendable efforts to bring clarity

into dependability modeling with SPNs [15] and associated

terminology. One of the recommendations contained

therein, which is followed in the present work was to

avoid long and awkward abbreviations for a particular

version of SPN: a subset of SPNs is specified and used

throughout the paper, and when comparisons are made with

different versions of SPNs, the distinctions are explicitly

described. At the same time, the author falls short of

following another recommendation in Ref. [15] of avoiding

the word ‘stochastic’ and simply using the term ‘Petri nets’

instead, out of respect to a quite substantial body of

literature where regular (untimed) Petri nets are successfully

employed [16].

There might be yet another reason for the relative dearth

of practical applications of SPNs to system reliability

modeling, which is more directly addressed in the current

work. The possibility of solving given SPN problems using

discrete event simulation has been realized for some time

and quite widely explored [17,18]. However, the develop-

ment of formalism itself was tightly coupled with the

solution capabilities for Markovian-type processes (which

included semi-Markovian and regenerative processes). The

present paper takes a fundamentally different approach:

taking into consideration the fact that numerical solutions of

the differential equations that govern underlying stochastic

processes can be supplemented by increasingly cheap (from

the computational standpoint) yet sophisticated Monte

Carlo simulations [19,20], one can remove any restrictions

on the modeled processes and concentrate instead on the

needs of reliability engineers to model complex scenarios in

a compact and transparent form. Determining the compat-

ibility of the presented extensions of SPNs with the modern

non-Markovian techniques as well as with other methods of

‘direct’ solutions for associated stochastic processes lies

beyond the scope of the present paper, but presents an

interesting subject for future research.

2. Present approach

In what follows, it is assumed that the failure

distributions of individual components of a system are

given, and the dependability measures (including reliability

and availability) of a stochastic system are sought.

Furthermore, the system is assumed to be dynamic (its

properties change with time), distributions are not limited to

exponential ones (unless stated otherwise), and large-scale

applications should be feasible. Particular attention is paid

to the descriptive power of the methods.

There is an ample body of literature describing SPNs,

and for a detailed description the reader is referred to

Refs. [11,12,21]. Only concepts relevant to the discussion

are described below.

A Petri net is a directed graph with two disjoint types of

nodes: places (denoted as circles) and transitions (denoted

as rectangles). A directed arc can connect a place to a

transition (an input arc) or a transition to a place (an output

arc). The places connected to a given transition by input or

output arcs are called the input or output places, respect-

ively, for this transition. A common extension of SPNs

introduces the concept of arc multiplicities (integer

numbers). Each place can be assigned a non-negative

number of tokens (denoted as small filled circles). A

combined assignment for all the places in the model is

referred to as a marking of the system, which fully

characterizes the system.

Under certain conditions, a transition can ‘fire’ and

remove a token (or more generally, a number of tokens that

is equal to the multiplicity of the corresponding input arc)

from its input place while depositing a token (number of

tokens equal to the multiplicity of the corresponding output

arc) to its output place. Generally speaking, the number of

removed and added tokens does not have to coincide, and

these two parts of firing can be considered as independent

events corresponding to the ‘death’ and ‘birth’ of the tokens,

respectively. However, a combination of a token’s removal

from an input place and a token’s deposit into an output

place can be also considered to be a single action of moving

the token from the input to the output. If all the tokens are

indistinguishable, then both interpretations are equivalent.

As discussed below, for labeled tokens the difference is

significant, and the latter interpretation is particularly

relevant for aging tokens.

The firing of a transition corresponds to any discrete

event of the modeled system, and represents a funda-

mental feature of Petri nets: the ability to graphically

depict the dynamic behavior of a system. Naturally, a key

property is the definition of firing policies for each

transition; in order to fire, a transition must be enabled

first. A transition is considered to be enabled if each of its

input places has at least as many tokens as the multiplicity

of the corresponding input arc. Most of the SPN

extensions introduce a so-called inhibitor arc (denoted

as an arc terminated with a small hollow circle). While

these inhibitors do not increase the SPN’s representational

power, they can make the model more compact. In the

presence of inhibitor arcs, there is an additional condition

that a transition can be enabled only when all of the

inhibitor input places for this transition have fewer

numbers of tokens than the corresponding arc multiplicity.

Original Petri nets did not contain a concept of time [22],

and an enabled transition would fire instantaneously. The

introduction of deterministic time delays (that is, firing

takes place if a transition is enabled for a specified

amount of time) has led to timed Petri nets that were later

extended to SPNs where such delays are random variables

based on given distributions.
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In the so-called colored Petri nets [23], tokens are

distinguished (labeled), which allows the implementation of

different firing policies for different tokens. Moreover, by

specifying different labels for a token that enters and leaves

a transition, colored Petri nets permit a dynamic change of

the labeling of a token upon its passing through a transition.

The ability to move a token from one place to another and

alter its labels in the process provides a flexible mechanism

for tracking relevant changes in the system. This mechanism

turns out to be particularly useful in SPNs with aging

tokens. In existing high-level Petri nets, the changes in

token labeling are fully determined by the firing occurrence

itself, and are not affected by the transitional process; that is,

a given token can change its property in a discrete fashion

upon the firing of a transition, but as long as it stays in the

same place its properties remain the same.

Another extension of SPNs allows for so-called marking

dependence when the firing policies can depend on the

marking in a quite general way. As discussed below, while

the employment of this feature can be beneficial under

certain circumstances, it can also lead to compromising

model modularity and consequently, a lack of clarity [24].

The introduction of aging tokens can greatly reduce the need

for marking dependence. The standard SPNs imply that,

when a transition is disabled, it ‘forgets’ its previous

enabled time; the clock is reset when the transition is

enabled again and the corresponding firing time is

resampled. This is referred to as enabling memory or

preemptive repeat different (prd) policy. Alternatively, a

transition can ‘remember’ the time that it was enabled (that

is, the transition clock is stopped but not reset). This is

called age memory or preemptive resume (prs) policy in

accordance with the classification introduced in Ref. [25]

(see also Refs. [21,26]). Finally, there is a third type of

memory policy, preemptive repeat identical (pri) [27],

when the clock is reset but no resampling is done, and the

same sampled time is used. As shown below, these different

policies can be equivalently modeled in the proposed

extension of SPNs, where the memory is assigned not to the

transition but to the token instead.

3. SPNs with aging tokens

The key feature of the present formulation is the

introduction of tokens with memory (or aging tokens): a

token’s label can change continuously during the period the

transition is enabled. Such tokens can coexist in conjunction

with regular colored and uncolored tokens. The value of

these counters can affect the firing policies of transitions that

are enabled by such tokens. As in colored Petri nets, there

might be more than one counter associated with a given

token; for example, it can be a real number between 0 and 1

(indicating the fraction of a part’s lifespan that was ‘spent’),

or the actual time that the token was enabling a transition.

Such continuously changing counters can naturally facilitate

modeling of accumulated damage, or any other property that

is continuously changing with time. These aging counters

can be complemented by discrete counters existing in

colored nets, such as the number of repairs for the part. The

latter feature can be useful, for example, where a limited

number of repairs are allowed for a given part before it is

scrapped. These dynamic features are only possible when a

token can be ‘preserved’ by a transition and both parts of

firing (removing and depositing) are treated as parts of a

single action: moving the aging token from an input to an

output place. Obviously, ambiguities must be avoided if

multiple inputs and output places and/or arc multiplicities

are present: the route of all the tokens that are preserved by

the transition must be uniquely specified by matching

(labeling) corresponding output and input arcs. A death or a

birth of an aging token can still occur (just like with regular

tokens).

Unlike existing SPNs with memory-enabled transitions,

the current formalism assigns the memory to tokens instead,

and unlike the existing colored SPNs, the token labels

affecting firing policies can change continuously (i.e. the

value of these labels, or counters, may change gradually

while the token is enabling a transition, and not only in a

discrete fashion upon the firing of a transition). Aging of

a token occurs when the token enables a transition that has a

matching firing policy for this type of token. Obviously, at

any given marking, an aging token can enable, at most, one

such transition per counter in order to define the aging of

this counter in a unique fashion; however, in addition, this

token can enable an arbitrary number of transitions that do

not affect its age. In order to take full advantage of aging

tokens, it is useful to distinguish several modes of firing for a

given timed transition (stochastic or deterministic):

(1) ‘Standard’ mode. Once the transition is enabled, a

stochastic distribution is sampled or a deterministic

delay is provided, and an associated single clock starts.

When this clock runs down, the transition fires a

number of tokens that is equal to the multiplicity of the

corresponding output arc. Tokens are chosen at random

from the input place. The procedure is repeated as long

as the transition remains enabled.

(2) ‘Series’ or first-in-first-out (FIFO) mode, similar to the

standard mode in that only one clock per transition is

active at any given point in time; however, the tokens

are fired in the order they arrive in the input place. The

distinction between FIFO and standard mode is

relevant only for labeled tokens.

(3) ‘Multiple’ (parallel) mode, useful for a more compact

description of similar processes. For each token in the

input place, the firing delay is determined indepen-

dently, and a corresponding separate clock is assigned.

The fundamental distinction of this mode is that the

firing policies are intimately related to properties of

both token and transition, so that an analogy with a key

(token) and a lock (transition) can be made. Both
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multiple arcs for standard transitions and multiple

transitions are designed to engage several tokens at the

same time. However, the former essentially lump

tokens into a single packet that is fired as a single

token, while the latter preserve the individuality of

each token. For clarity purposes, in the present

formulation of multiple mode arc, multiplicity affects

only enabling (and not the firing itself).

Multiple transition is the most commonly used mode in

SPNs with aging tokens, and in fact it can be used to mimic

the behavior of the two other modes. Indeed, for a series

transition, this modeling is fairly straightforward (see Fig. 1

for an example with three tokens), although the series

transition provides a more compact representation,

especially if the input place, denoted as I; is an input to

other transitions as well.

Remarkably, representing standard transitions is see-

mingly more cumbersome than series ones. Effectively, the

difficulty stems from the need to remove the influence of

token properties on the firing policy of the transition (Note

that a token that enables a standard transition need not even

be present when the transition is fired). Such a token-neutral

firing using multiple transitions is possible if an auxiliary

token is introduced. Fig. 2a depicts a series transition T0

from the input place (denoted as I) to the output place

(denoted as O). In Fig. 2b seven transitions, Ti; i ¼ 1;…; 7

are introduced to provide the same functionality (only T4 is

a multiple transition with all others being of the immediate

type). As soon as a token appears at I for the first time, T1

fires. All the tokens from I are returned there, but in addition

an auxiliary token is ‘born’, which enables T4 that has the

same timing properties as T0: The inhibitors are arranged in

such a way that, if all tokens are removed from I; then T3 is

fired (thus disabling T4), and conversely, if a token is moved

to I; the auxiliary token is fired back (via T2) and T4 is

enabled again. The firing of T4 causes all the tokens from I

to be fired and enable T5 and T7: Since T5 has a higher

priority, it fires a randomly chosen token to O: All other

tokens are returned to I via T7; a new auxiliary token is born

and the clock for T4 is restarted. Note that the use of non-

aging auxiliary tokens is equivalent to prd policy for a

standard transition, while aging auxiliary tokens can mimic

prs policy. Furthermore, pri policy can be modeled using

the same diagram as well by assigning T4 a deterministic

delay, tL ¼ tmax þ e ; where tmax is the upper time limit of

the model and e is an arbitrary small delay. The stochastic

nature of the firing of T4 is reflected in the initial age of the

auxiliary token. If FðtÞ is a cumulative distribution function

(CDF) of the pri policy, then the following CDF for the age

of the auxiliary token can be given:

F̂ðxÞ ¼
1 2 FðtL½1 2 x�Þ; when x $ 0

0; when x , 0

(
ð1Þ

For immediate transitions the concept of a clock is

irrelevant, and if several tokens enable an immediate

transition simultaneously, the fired token is chosen at

random (however, one can introduce priorities in these

situations as well, for example, based on token colors), and

the arc multiplicities have the standard meaning.

Introducing aging tokens into Petri-net formalism has

important ramifications for system reliability modeling of

aging and repairable systems. Several salient features of

real-life systems can be modeled more transparently; these

include aging systems with load sharing, warm spares,

multiphase missions, and imperfect repair of pooled parts.

In conjunction with the features that already exist in Petri

nets, this provides a very powerful tool for modeling system

reliability.

4. Application of aging tokens

4.1. Example A: two units in a series

To illustrate these concepts, let us consider two

repairable units that are connected in series. Failure of any

of the components results in the failure of the system. It is a

common practice to model such a system as two RBD

blocks connected in a series, or as a fault tree with two basic

events connected with an ‘OR’ gate. What is less commonly

recognized is that an assumption of the failure of these two

units to be independent is in fact only an approximation

when availability of the system is calculated: it is reasonable
Fig. 1. Series transition with three tokens: (a) modeling using series

transition; (b) equivalent modeling using multiple transitions.

Fig. 2. Standard transition: (a) modeling using standard transition; (b)

equivalent modeling using multiple transitions (diagram also provides a

means to model pri transitions).
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to expect that, after one unit fails and the system goes down,

the failure rate of the second unit changes (for example,

goes to zero). For the quantitative implications of this, see

Ref. [28]. Explicit extraneous constructions are required to

model this subtle yet very simple situation with either FTAs

or RBDs.

Let us first assume that the failure and repair rates are

constants for both units (l and m; respectively), so that we

can model this system using a Markov chain. As shown in

Fig. 3a, there are only two possible states: O; when both

units are operating, and I; where one of the units has failed

and another one is idling. Obviously, the transitional rate

from O to I is 2l (corresponding to the failure of one of the

units), while from I to O the rate is m:

Fig. 3b depicts how the problem can be modeled with

SPNs. Each of the two units can be in three possible states:

up, idle (standby), or down. There are three places

corresponding to each of these states, and two tokens

denoting each unit. The presence of a token in a given place

indicates that a unit is in the corresponding state. Initially

both tokens are in the ‘up’ place, indicating that both units

are operating; a failure transition is therefore enabled. This

transition is multiple, i.e. there is an independent clock

associated with each enabling token. It is worth noting that

compared to the Markov chain representation the require-

ment for the two units to be identical is relaxed here

(different distributions can be assigned to the firing time for

each of the colors). At the same time, the transition from up

to ‘standby’ is disabled despite the presence of tokens in the

transition’s input place due to the inhibitor of multiplicity

two. When a unit fails, which implies that one of the two

clocks in ‘failure’ transition runs to zero, then the

corresponding token is fired and deposited into the ‘down’

place. This event has two consequences: the ‘repair’

transition is enabled and the corresponding clock initiated

(so the repair of the unit can occur); in addition, the inhibitor

becomes disabled (since there is only one token in its input

place) so that the other token (corresponding to the

remaining ‘good’ unit) is immediately fired to the standby

place. It stays there as long as the failed unit is in the down

place (an inhibitor ensures that), but once the failed unit is

repaired, the token corresponding to the good unit returns to

the up place.

This simple example is somewhat unrepresentative in

the sense that the modeling using Markov states looks

more compact (and on the surface there seems to be no

particular reason to use SPNs instead). However, a

distinguishing feature of the SPN model is that it can

handle not only two but also an arbitrary number of units

(tokens need to be added and the multiplicity of the first

inhibitor appropriately adjusted, but otherwise the model

will look exactly the same). Obviously, the Markov model,

especially in the case of units with different failure rates,

will grow significantly in size. The underlying reasons for

such a difference are quite fundamental and are covered

elsewhere [24]. Here it suffices to say that the Markov

model is of a global kind: any local change in the system

corresponds to a different (global) Markov state. On the

other hand, SPNs provide local modeling: only

the combined marking of all the places characterizes

the system. A direct consequence of this difference is that

Markov chains use a global (explicit) logical branching

where all the logical permutations must be specified

upfront, while SPNs use local (implicit) logical rules,

which results in more efficient models when the problem

sizes increases. In the case of a system with only two parts

there might be fewer global states than local ones, but for

larger systems the situation is practically always reversed.

Let us now attempt to relax the assumption of constant

failure rates (however convenient this assumption may be,

its consequences are quite detrimental to the model’s

fidelity [29,30]). Obviously, Markov chains cannot be

used directly here. However, there are existing extensions

of SPNs that provide a mechanism to model such situations.

More specifically, if one uses prs policies for failure

transitions, then when the failed part is repaired and the

unfailed part is activated, the failure transition will

remember its age; in other words, a transition has an age

memory. Let us show how the same functionality can be

achieved when the memory is assigned to a token instead of

a transition. A single aging label is introduced with the

token’s age defined as the current value of the correspond-

ing CDF. This value can be used to calculate the ‘equivalent

time,’ i.e. the time with the same value of CDF [31,32]

corresponding to a transition in a new place. Since in this

particular example the token returns to the same place, the

equivalent time is equal to the time that the token was

enabled. However, as shown in the following examples, that

is not always the case. When the token returns to the up
Fig. 3. Two units connected in a series: (a) modeled using Markov chains;

(b) modeled using SPN.
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state, the firing time is determined by taking the age of the

part into consideration. This example demonstrates the use

of aging tokens, but does not present clear advantages over

assigning memory properties to transitions. Let us proceed

with examples where these advantages are more transparent.

4.2. Example B: a repairable system with warm spares

Let us consider a repairable system with two active units

and a ‘warm spare’ (the term describes a situation where a

standby unit can fail but the corresponding distribution is

different from that of an active component). If the transition

rates are constant, such a system is often modeled using

Markov chains [33]; this requires 18 states and 36 arcs for a

general case when all three components are different (for

indentical components four states are sufficient to model the

system). The discussion from the previous example about

‘global’ versus ‘local’ modeling is quite relevant here.

Using SPNs, the model has a much simpler form (Fig. 4) and

is easier to read. As in Ref. [33], the system is considered to

be down if fewer than two units are operating, but the

remaining unfailed unit can fail nevertheless (alternative

assumptions can be implemented using the procedure

outlined in the previous example). Similar to the previous

example, there are three possible states for each unit (each

state is represented by a corresponding place). Initially there

are two tokens in the up place, which disables an immediate

transition for a third token from the ‘spare’ to the up place

by means of an inhibitor of multiplicity two. A spare or

an active component can fail, which is modeled by two

appropriate timed multiple transitions to the down place.

Once any of the two active components fails, the

‘activation’ immediate transition becomes enabled and a

token corresponding to a spare moves to the up place

(assuming that a spare is available). It is interesting to note

that, depending on the choice of the type of the repair

transition, different repair policies can be modeled: a series

type will be equivalent to a single (first-in-first-out) repair

team, while a multiple transition would model unlimited

repair recourses. What is also remarkable is that the model

actually remains correct for a general k-out-of-n case, as

long as the tokens are added and the arc multiplicity is

adjusted. While in many respects this model is very similar

to Example A, there is one fundamental difference in

modeling the systems with varying hazard (failure) rates:

damage now can accumulate in two different transitions

(spare and active failures), and therefore the modeling with

prs transitions is far from straightforward, if not impossible.

One can envision merging the up and spare places and

instead modeling the transitions from the spare to up state

for each component by implementing an elaborate marking

dependence; however, such a solution will lead to the loss of

visual clarity that the original non-aging model possesses.

The introduction of aging tokens, on the other hand,

permits comfortable modeling of the aging of system without

any marking dependence. In fact, the visual representation of

the model will stay the same (Fig. 4). As in Example A, each

token is assigned a label that records the component’s age,

Ag: Let us assume that at t ¼ t0 the component is new

Agðt0Þ ¼ 0; while Fa and Fs are CDFs corresponding to the

firing policies of active and spare failures, respectively. Let

us further consider a scenario when one of the active com-

ponents fails first at t1: Then a token corresponding to a spare

component moves to the up place, and its age A3 ¼ Fsðt1Þ is

used to calculate an equivalent starting time [31,32], ts ¼

F21
a ðA3Þ; which then is used to sample Fa:

4.3. Example C: load sharing

Let us consider a subsystem where two parts with aging

failure distribution (e.g. Weibull) share a common load.

Fig. 5 provides an illustration of how such a system can be

modeled within the proposed framework. Initially, the two

parts are in an undamaged state, so the two corresponding

labeled tokens are in place A. Both of these tokens enable

the first transition that has matching (possibly different)

aging policies for each of these tokens. A (second)

immediate transition from place A to C is disabled due to

the presence of an inhibitor of multiplicity two. Once one of

the parts fails, a corresponding token moves to place B; this

enables the second transition, which fires immediately and

moves the other token corresponding to the still-operating

part into place C. This in turn enables a third transition that

has a matching (faster) aging policy, corresponding to this

Fig. 4. SPN model for a two-out-of-three repairable system with a

warm spare. Fig. 5. Modeling of a shared load for a two-component system.
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part carrying the load alone. The amount of damage

accumulated when the token was staying in place A can

be used to determine the firing time based on the distribution

for the third transition. Such models need not be restricted to

time scaling, as is commonly done in modeling multiphase

changes in loads (when the effects of changing loads are

modeled by changing the clock speed), and more rigorous

modeling based on the equivalent time (see the previous

example) is implemented instead.

An SPN without aging tokens would consist only of the

top part of Fig. 5, and the important features of the system

would not be modeled graphically. Instead, the definition of

the firing policy for the first transition would include a

statement to the effect that if a token is marked in State B

(one of the two parts has failed) then the firing policy

changes (which would further complicate this situation

since for aging parts such a change would also depend on

when the second part fails). Similar modeling problems

exist in multiphase systems (see Example D); in fact, the

difficulties associated with such modeling probably explain

why there are no published results (to the best of the

author’s knowledge) for Petri-net modeling of shared load

problems or multiphase missions where different phases

require different general (non-exponential) firing policies

for the same unit.

4.4. Example D: multiphase missions

Next, let us consider a simple example of an aging

part undergoing a two-phase periodic mission (Fig. 6):

transitions e1 and e2 determine the duration of the first

(place A) and second phases (place B), respectively (such

durations can be either deterministic or non-determinis-

tic). During each phase the part can fail (which

corresponds to the firing of the transition f1 or f2;

respectively). In this case, transitions f1 and f2 have

aging policies for the token, but not e1 and e2:

The modeling difference of the proposed framework with

existing SPN techniques is discussed in more detail in

Ref. [34], where a relatively more elaborate example of

phased mission systems [35] is modeled using aging without

resorting to marking dependence.

4.5. Example E: pooled repair

Let us consider a fleet of three similar units that share a

pool of spares (Fig. 7): when a part fails at any of the units, a

spare from the pool is used (if available); in the meantime,

the failed part is sent for repairs. When repaired, the failed

part is added to the pool of spares. If the repair restores the

part to its pristine, ‘like-new’ state, there would be no

problems modeling such a situation in standard SPNs;

however, very often such an assumption is unrealistically

optimistic. Let us instead consider so-called ‘minimal

repair’ (quite commonly used in reliability): the part is

repaired to the state where it was just before failure.

In this model, only failure transitions have aging policies

for the tokens associated with them. The counter for a given

token records the age of a part, which is used to sample the

corresponding failure distribution. More sophisticated

policies of repair can be modeled with the proposed

technique as well (for example, the repair counter for a

token can be activated, and only a limited number of repairs

will be allowed before the part is discarded).

Even such a relatively simple situation presents formid-

able challenges for modeling using high-level Petri nets

with memory-enabled transitions (once the part fails, the

corresponding transition fires; even if such a transition

preserves the age, keeping the track of all possible

combinations is not practical because a different part can

replace the failed unit). Similar challenges exist in standard

commercial software packages that use RBDs.

4.6. Example F: system on demand

To further explore the flexibility of SPNs with aging

tokens, let us turn to the first example from Ref. [6] where a

new construction (demand dependency gate, DDEP) is

introduced for dynamic fault trees. Therein, as a motivating

example for the introduction of this new construction, a

computer-controlled hypothetical sprinkler system (HSS) is

considered. The system is comprised of three sensors, two

pumps, and a digital controller. Each pump has a support

stream (valves and filters) that must be operational for the

pump to start. The sensors send temperature readings to
Fig. 6. Modeling of accumulated damage in a periodic mission consisting of

two different phases.

Fig. 7. Repairing with shared pool of spares.
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the digital controller, and when a threshold is exceeded, the

controller activates the pump. If the first pump is not able to

start or fails during the service, the backup (second) pump is

activated. HSS is available on demand if at least two of

the sensors are operational and at least one pump and the

controller are functional. Once the pump is operating, only

the digital controller and pump system are required. The key

concept in DDEP is separating the analysis into two phases:

Fig. 8. Models for a hypothetical sprinkler system: (a) reliability part modeled in dynamic fault trees; (b) combined SPN model for reliability and availability.
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standby and demand. A steady-state availability of the

standby components is used as an input to DDEP and

incorporated into the reliability assessment of the demand

phase. Fig. 8a depicts the resulting dynamic fault tree for the

reliability part HSS system. In addition to DDEP, cold-spare

gates [5] are employed. Neither the model’s availability

of the support systems nor the demand are discussed. For a

detailed description of this model, the reader is referred

to Ref. [6].

Fig. 8b depicts an SPN model for the same system. In

addition to the features modeled in Fig. 8a, simple

availability models for each component as well as a

simulation of the demand are provided. The lower part of

the graph refers to the standby mode. All transitions in the

model are multiple. The tokens that denote the three sensors

are originally in the up place. After a certain time ðt1Þ these

sensors are queried for temperature readings (tokens are

fired to r1), and three options exist for each sensor: the

reading is above the threshold (probability c1), the reading is

normal (probability c2), or there is no correct reading (the

sensor is faulty, probability c3). (It is assumed that faulty

sensors are immediately detected: if needed, this model

could be further refined to reflect the possibility of

undetected sensor failures.) The tokens are moved in

accordance with these options to the corresponding places,

and if at least two sensors are down, then f1 receives a token.

Similarly, if the controller fails, f1 receives a token as well.

The place f1 corresponds to the ‘failure to detect the

demand’ mode. Otherwise, sensors are read with t0 time

interval, until place d1 receives at least two tokens, when a

controller token (CT) is moved into place a1: This is a

colored token, but here, in order to be distinguished in black

and white as well, a hollow token is used, and the same is

true for the corresponding arc arrowheads that help to

visualize the token’s movements. Here a1 is an input place

for two immediate transitions. The one with the higher

priority (the corresponding arc is denoted with a þ ) will fire

first if both of the colored tokens corresponding to the first

pump itself and its supporting system are available. Then all

three colored tokens are moved into p1; indicating that the

first pump has started to operate. Otherwise, the CT moves

to a2; and similar construction allows initiation of the

second pump ðp2Þ:

If the second pump has failed to start, the CT is moved

to f2; indicating that the second failure mode occurred:

failure to respond to the demand. Once the first pump

starts to operate, there are two options: either the service

will be successfully completed (and the CT moves to

s1)—which occurs after a specified time ts—the corre-

sponding transition’s deterministic delay is ts; or a failure

occurs. An uncovered failure of the controller is modeled

by firing the CT to f3 (which is the third mode of failure

that occurs during the operation). On the other hand, if a

stream or a pump itself fails during the operation, and one

of the corresponding tokens moves to d2; then the CT is

moved to a2 and the spare is activated. Such spare

modeling is possible due to the fact that the CT is an

aging token and therefore has a label that records the time

the CT has spent at p1; while the transition from p2 has a

matching firing policy, so that the timed delay is ts 2 t1:

Furthermore, if the failures of each component are non-

exponentially distributed, the token’s labels allow record-

ing of the age of the component, so that the model

remains valid. For example, the token corresponding to

the first pump can remember the age it accumulated

during the standby phase, which will affect the sampling

of its failure time during the operation.

4.7. Example G: damage tolerance

A simple damage tolerance model for a single

component is provided below (Fig. 9). A token corre-

sponding to a component is initially marked in the place

denoted as B; indicating that the component is operating.

The age of this token reflects the maximum flaw size. The

counter is initialized with a value characteristic of a new

component (corresponding to age zero). The token enables

two transitions: a failure transition and the ‘Time Between

Inspections (TBI)’ transition. The value of the counter

changes (reflecting the fact that the flaw size increases) as

the clocks associated with both transitions race to zero. If

the clock associated with the failure ‘wins’ this race, the

token is fired from B to C; and the ‘game’ is over.

Obviously, at this point the value of the token’s counter

corresponds to the critical flaw size, and the component

fails. On the other hand, if the TBI clock reaches zero

first, the token is fired to A; and its age translates into the

characteristic flaw size that is less than the critical flaw

size. Next, an inspection takes place (in the example this

inspection is denoted as instantaneous, but delays

associated with inspections can be modeled as well).

With a certain probability, p (which can depend on the

value of the counter), the part passes the inspection and

the token is fired to B: As a result, a new age is calculated

in accordance with the efficiency of the inspection: a new

value is sampled from a distribution corresponding to the

maximum undetected flaw size. The token’s age is used to

determine the new time associated with the failure

transitions, and the process is repeated. If the part does

not pass inspection, the token is fired from A to D (instead

Fig. 9. A simple SPN model for a damage-tolerant component.
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of C), which indicates the need for repair or retirement of

the part.

5. Implementation example

The emphasis of the paper is on providing a graphical

means of modeling system reliability. While striving for

implementation independence, the importance of demon-

strating the utility of this framework is recognized as well.

Therefore, the description of a relatively straightforward

implementation of the proposed framework is provided with

the understanding that the applications of aging tokens are

by no means restricted to this implementation example. In

accordance with the classification provided in Ref. [36], the

example corresponds to a direct, component-based discrete

event simulation. Relevant dependability measures for the

system (such as reliability or availability) are calculated by

tracking the histories of the appropriate tokens’ movements.

In what follows, SPNs with n transitions, m places, and only

multiple timed transitions are considered (as shown above,

both standard and series transitions can be expressed in

terms of multiple transitions). Arcs, tokens, and transitions

can each have sets of properties that are defined as follows.

5.1. Arc attributes

For each transition a; ða ¼ 1;…; nÞ aa; ba; and sa
represent sets of attributes for input, output, and inhibitor

arcs, respectively. The attributes include: the place that

terminates the arc, multiplicity, and color preference. The

latter property merits a more detailed description. A subset of

colors that are compatible with this arc is specified therein

(by default this subset coincides with the full set of colors). If

a transition changes a token color, a new color is used to

determine whether the token is compatible with an output

arc. If tokens and arcs are incompatible they do not affect

each other’s behavior. For example, if a token arrives at a

transition and none of the output places is compatible with

the color of this token, the token’s death occurs (see, for

example, Fig. 2, transition from place d1 to a1). This property

allows the filtering of tokens and their redirection in

accordance with their colors (see, for example, T1 in Fig. 2

and the transitions from p1 to a2 and d2). In addition, a set of

attributes that is peculiar to output arcs is specified: an option

is provided for the birth of new tokens. If the corresponding

flag is turned on, then a new token’s color and age are speci-

fied. The age can be either deterministic or sampled from a

certain distribution (as in modeling pri policy or in example

G). It is useful to extend the set of utilized distributions to

include such ‘derived’ distributions as provided by Eq. (1).

5.2. Token attributes

At the start of a simulation t ¼ t0; tokens are numerated

and provided with the corresponding index, g ¼ 1;…; k0:

For each g, the initial marking M0
g indicates the place where

the token (denoted as Yg) is located; here k0 corresponds

to the initial number of tokens. As the simulation

progresses, the number of tokens present in the model

might change. In the instance of the death of Yg the

corresponding marking is set to zero: MgðtÞ ¼ 0: Tokens

newly born during simulation are assigned consecutive

indices: g ¼ k0 þ 1;…: The token’s colors and age are

denoted as Cg [ {1;…; q} ; C and Ag [ ½0; 1½; respect-

ively (in the present implementation only one label of each

kind is permitted).

5.3. Transition attributes

For each transition a and each subset of colors c # C; the

following attributes Zacj ðj ¼ 1;…; 7Þ are provided:

† j ¼ 1: transition delay type. Value 0 corresponds to an

immediate transition, 1: timed, 2: exponential, 3:

Weibull, 4: lognormal, 5: normal, etc.;

† j ¼ 2,3: parameters of the transition. In the case of an

immediate transition, the first parameter specifies the

type of the conflict resolution (0: priority, 1: probabilistic

weight), while the second parameter provides either the

probability or the numerical priority. If priorities are

specified for several simultaneous transitions that are

enabled by the same token, only the transition with the

highest priority is fired; otherwise the firing transition is

randomly chosen with probabilities proportional to the

weight specified.

† j ¼ 4: policy with respect to the color label. Values take

integers (positive or negative) that are added to the color

label. Default zero value keeps the color unchanged.

† j ¼ 5–7 describe interactions between the transition

and the token’s age. j ¼ 5 Indicates whether the age is

affected (1) or not (0). An internal check is

implemented to ensure that only one transition affects

a given token in a given place. The sixth value

conversely indicates whether the firing policy is

affected by age (1) or not (0). The seventh value

specifies whether upon the firing of the transition the

age is reset to any value ~Ag [ ½0; 1½; the value 1, on

the other hand, indicates that age has not been reset.

A component-based discrete event simulation [36] as

applied to SPNs implies that each enabled transition-token

pair {Zaj
;Ygj

}; j ¼ 1; l can potentially change the system

state. However, only the event that corresponds to the

earliest firing cannot be affected by other events. Therefore,

the simulation consists of the following two phases.

5.4. Initialization

† Agðt0Þ are specified; at t ¼ t0 all enabled pairs of

transition and tokens {Zaj
;Ygj

}; j ¼ 1; l are identified
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and assembled into a list of following tuples:

Wj ¼ kZaj
;Ygj

; te; tsl

Here te corresponds to the time when the pair was

enabled, and ts ¼ F21ðAgÞ is the equivalent starting time

for this transition. Only probabilistic conflict resolutions

and choices among multiple tokens for immediate

transitions are run-dependent; all other tuples can be

determined prior to the individual runs, so a simple loop

over all transitions is not computationally expensive.

† For each token Yj with stochastic aging, a random

number Am
j [�0; 1½ is sampled that indicates the

maximum age of the token, i.e. when token is fired).

† Firing delays tj for each Wj are calculated, and W is re-

ordered in accordance with tj; so that t1 ¼ minj {tj}. For

allagingtokensandmatchingtransitions(e.g. ifZajc6 ¼ 1):

tj ¼ F21
aj

ðAm
gj
Þ2 F21

aj
ðAgj

Þ ð2Þ

where F is the corresponding CDF. All other random firing

delays are sampled as necessary.

5.5. Transport

First, the conflict resolutions (if any) are resolved for

W1 : the presence of a conflict implies that t ¼ t1 and

there is at least one more Wj; such that tj ¼ t and either

Za1
¼ Zaj

or Yg1
¼ Ygj

: In the former case, several tokens

simultaneously enable the same immediate transition, and

the token to be fired first is chosen at random; the

corresponding tuple is placed first within W : In the latter

case the same token enables several transitions; then all

such Wj are used to resolve the conflict either probabil-

istically or deterministically in accordance with the

transition properties. As a result a single tuple, which

after a resorting becomes W1; is chosen for firing. All

other tuples are removed from W : Time is updated t ¼ t1

and then W1 is fired. All the changes in the system take

place as follows:

† W1 is removed from the list of enabled pairs

† Marking MgðtÞ is updated, and the age Ag1
is either reset

(if Za1c7 – 1) or updated (if Za1c5 ¼ 1) using formula

Ag1
¼ Fðts þ t 2 teÞ: If the age is reset, a new maximum

age Am
1 is sampled.

Fig. 10. Reliability estimation for the shared load example using SPNs with aging tokens (discrete event simulation).
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† If the firing of transition Za1
caused the birth of a token

Yk0þr to occur, then a new token age is assigned or

sampled.

† All other transitions that were enabled by token Yg1
in the

old place are disabled; the age is updated if appropriate.

Similar actions are performed if either Yk0þr or Y1 in their

respective new places (if any) inhibit some previously

enabled transition.

† Conversely, with respect to the previous step, a test is

conducted to check whether Yg1
or Ygk0þr

have enabled any

previously disabled transitions; if so, te ¼ T are recorded

along with ts; new firing times are calculated based on Eq.

(2), and new entries are inserted into W ; observing the

ordering of W with respect to firing times.

5.6. Verification of simulation results

Example C provides an obvious choice for verification

due to the availability of analytical formulae that can be

numerically evaluated with high precision [31]. As an

example, let us consider two identical components, so that

when both components are operating, the failure obeys a

two-parametric Weibull distribution with the shape par-

ameter k ¼ 1:4; and the scale parameter u ¼ 150: Upon

failure of a component, the failure parameters of the still-

operating component change to k0 ¼ 1:7; and u0 ¼ 90. A

numerical integration for time tmax ¼ 50 yields reliability

R ¼ 0:938015: Fig. 10 demonstrates how the simulation

results R̂ converge to this ‘exact’ solution. The standard

deviation for the reliability prediction can be estimated as

d̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR̂ð1 2 R̂ÞÞ=ðn 2 1Þ

q
;

where n is the number of histories. In Fig. 10 the bounds

½R 2 1:95997d̂;R 2 1:95997d̂� are shown corresponding to

95% confidence interval, assuming the applicability of the

central limit theorem.

Next, let us consider a case with warm spares (Example B).

Identical components with Weibull distributions with

parameters ks ¼ 1:4; and us ¼ 150 for spares and ka ¼ 1:7;

and us ¼ 90 for active components are studied. If a system

with no repairs is considered, an analytical solution again can

be obtained, and the correlation with the simulation results

are as good as in the case of the shared load. Similarly, when

the distributions for both failure and repair firing times are

replaced with exponential firing times, Markov chains were

used to validate the procedure. If a parallel repair that obeys

a lognormal distribution with parameters m ¼ and s ¼ is

introduced, then reliability for tmax ¼ 100 is estimated as

R̂ ¼ 0:712795 for 1mln histories, with the corresponding

estimate for the standard deviation as d̂ ¼ 0:000453:

6. Conclusions

In previously existing PN formulations, memory was

associated solely with transitions, which resulted in certain

difficulties in modeling the changes in the system configur-

ation while preserving the memory. In such a setting, the

changes in the damage accumulation (such as in multiphase

missions or due to load-sharing) must be accommodated by

the so-called marking-dependent firing policies. This

implies that a firing policy can change if the marking

changed elsewhere in the model. However, there is no

accepted way to express such dependence in a simple

graphical way, and it must be described using an external

logic; as a result, the clarity of the modeling is compro-

mised. It is important to note that such difficulties are

fundamental: if an event occurs that changes the properties

of a given component, then in accordance with the spirit of

Petri-net modeling, such an event would best be described

by a corresponding token moving from one place to another.

However, such a move would result in memory

loss, since memory is associated with transitions,

and once the token moves to a new place there is no

mechanism to associate any aging with the component that

it represents.

In contrast to such existing means of modeling aging

in SPNs, the concept of aging tokens is introduced. It is

demonstrated that aging tokens significantly improve the

dependability modeling flexibility and clarity of SPNs when

aging systems are considered. Aging tokens can be viewed

as a natural extension of colored Petri nets since they are

effectively token labels that are allowed to change not only

discretely upon the firing of the token, but continuously in

the process of enabling a certain transition that has a

matching policy. By extending the properties of token labels

and assigning memory to the tokens, not only can different

firing policies be implemented, but the resulting models

minimize the use of marking dependence and provide

models that more closely resemble standard SPN models

without aging. In addition, the hierarchical procedures for

constructing Petri nets (such as described in Ref. [23]) are

fully applicable for the proposed technique. The advantages

of new constructions are demonstrated in several examples,

including load-sharing, shared pools of identical imper-

fectly repaired components, multiphase missions, and

damage-tolerant components.
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