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ABSTRACT 
 

This paper presents a graphical discrete-event simulation (DES) model for the planning and 
operation of snow and ice removal in urban areas. The modeling is developed based on the 
scenarios previously described in Alprin (1975) using a new version of stochastic Petri nets 
(SPN) called Abridged Petri Nets (APN). The importance of flexible vehicle assignment to 
different snow removal routes is demonstrated. The model includes constraints with respect to 
limited vehicle and infrastructure resources as well as allowing for the possibility of mid-mission 
vehicle failures. 
 
KEYWORDS: Discrete Event Simulation, Stochastic Petri Nets, Urban Planning, 

Decision Theory, Vehicle Assignment Problem 
 

INTRODUCTION 
 
The winter of 2013-2014 was an especially rough season for many parts of the country with 
record-setting snow totals in many cities and regions. In fact, in the U.S., this year’s winter 
weather has been so severe, that it’s becoming commonplace to name the experience. For 
example, “Snowpocolypse” in Atlanta and “Chiberia” in Chicago. 
 Unfortunately, this severe winter weather also poses significant public safety problems. 
“Motor vehicle accidents involving wintry conditions and other hazardous weather claim the lives 
of more than 4,000 people in the United States and injure several hundred thousand each year” 
(NCAR, 2013). The severe weather also poses significant fiscal challenges to state and local 
governments, with many agencies exceeding their snow removal budgets and forcing them to 
tap into future infrastructure maintenance funding (Vock, 2014). For example, as of March 2014, 
Virginia’s Department of Transportation (VDOT) had spent about $156 million (budgeted $63 
million) for snow removal and Maryland’s State Highway Administration had spent $123 million 
(budgeted $46 million) (WTOP, 2014). 
 These safety and fiscal challenges highlight the importance of governmental 
transportation managers employing the class of analytical capabilities generally categorized as 
“business analytics.” These analytical techniques include “the use of data, information 
technology, statistical analysis, quantitative methods, and mathematical or computer-based 
models to help managers gain improved insight about their business operations and make 
better, fact-based decisions” (Evans, 2012). 
 Given that governmental transportation agencies need to quantify, project, and defend 
snow removal budgets and resources, more analytically-oriented operational planning can help 
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transportation managers make better resourcing decisions while also helping these same 
agencies better address the myriad resourcing challenges they face in deploying and sustaining 
snow removal equipment within the context of the agency’s charters. 
 
BACKGROUND AND LITERATURE REVIEW 
 
In this section we first review some key concepts regarding urban snow and ice removal with an 
emphasis upon emerging technological trends and their implications for urban planners and 
their business analytics approaches. We then summarize route optimization research with 
respect to snow removal operations and highlight an apparent gap in analytical capabilities 
currently available to governmental transportation planners. 
 
Urban Snow and Ice Removal Operations 
 
Across the U.S., every winter an army of “snow warriors” works around-the-clock to keep the 
nation’s roadways open. As noted by Virginia’s Transportation Secretary “this winter has put a 
strain on our maintenance budget…. However, we have sufficient resources to ensure our roads 
are well kept and we will continue to be good stewards of public funds…. we’re committed to 
delivering a safe and reliable transportation system” (Rollison, 2014). In recent years, the best 
snow removal strategy that many transportation agencies recommended wasn’t “for snowplows 
to make it possible for people to drive to work and school – it’s for people to refrain from driving 
to work and school so that snowplows can get on with it” (Pearlstein, 2014). 
 In general, when weather forecasts indicate the possibility of snow or icing conditions, 
transportation departments begin preparing and prepositioning their equipment (DSNY, 2014). 
Salt spreaders are deployed once the snowfall begins; however, when the accumulation 
exceeds roughly three inches or the temperature drops too far (exceeding salt’s effective 
temperature range), snowplowing operations commence. Depending on the snow totals, these 
snowplow operations can become multi-day efforts. For example, in the northern Virginia region, 
this season one eight-inch snowfall required 4,000 trucks and 36 hours to complete the 
snowplowing plowing operations (Pearlstein, 2014). 
 
Technological Trends in Urban Snow and Ice Removal 
 
Like so many facets of modern life, sophisticated information-based applications have brought 
greater efficiency and effectiveness to snowplowing operations. 
 For example, in the past, transportation officials have often lacked critical information 
about roadway conditions. They relied on ground-based observing stations that were spaced 
miles apart, requiring them to interpolate the intermediate weather conditions (NCAR, 2013). In 
addition, intervening micro-climate effects on roadways created highly variable and 
unpredictable conditions which contributed to ineffective and inefficient snowplowing operations. 
“If officials dispatch snowplows unnecessarily, or treat roads … when not needed, they risk 
wasting money and harming the environment. If they do not treat the roads, however, drivers 
may face treacherous conditions” (NCAR, 2013). To better manage this risk, the U.S. 
Department of Transportation launched a test program “deploying hundreds of plows [across 
three states] with custom-designed sensors that continually measure road and weather 
conditions…. It gives road crews ... [a] detailed, mile-by-mile view of road conditions” (NCAR, 
2013). Global Positioning System (GPS) technology is used to locate and time-stamp these 
measurements which are transmitted via Internet, radio or cellular networks to NCAR 
centralized databases and then shared with the states. 
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 Another rising information-based capability is the use of geographic information system 
(GIS) technology for snowplow tracking. A recent project in Columbus, OH is typical of these 
efforts. Columbus’ project involved monitoring over 100 snow removal vehicles across 
approximately 2,000 miles of roadway (Scott, 2013). “This new GIS technology will internally 
monitor both real-time and historical performance of the city’s snow and ice removal activities 
(Scott, 2013).” Similar GPS-based capabilities have been deployed in other U.S. cities, such as 
Chicago and New York City where PlowNYC “tracks the location of more than 1,700 plows and 
spreaders … working to clear the streets and roadways of the 5 boroughs” (Lewis, 2013). 

A final example of the impact that information-based technologies are having upon 
winter snow removal operations and driving safety is Maryland’s Coordinated Highways Action 
Response Team (CHART). The CHARTWeb website provides a variety of atmospheric and 
surface level metrics, including: air temperature; wind speed and direction; precipitation type, 
rate and accumulation; and pavement temperature (CHART, 2014). This latter metric is of 
particular interest as it provides the “Temperature range of the pavement sensor roughly 3 mm 
… below the surface of the sensor” and was used by Washington DC news outlets to warn 
motorists of possible winter roadway icing conditions. 

These and many other new and upcoming information-based capabilities are providing 
transportation managers with insights into their snow removal operations that were previously 
unimaginable. Clearly the era of “big data” has arrived for transportation operations, and 
technology is providing ever-more robust data sources which can serve as key enablers for 
governmental transportation managers to routinely employ business analytics. 
 
Route Optimization Research 
 
Perrier, Langevin and Campbell (2007) surveyed optimization models and solution algorithms 
for spreading operations vehicle routing. They classified these vehicle routing solution methods 
into three broad classes: optimization methods, rule-based methods, and heuristics (which was 
further subdivided into constructive methods, composite methods and metaheuristics).   
 Based upon their survey, Perrier, Langevin and Campbell (2007) observed that “Vehicle 
routing problems in winter road maintenance are the most studied of any winter road 
maintenance problems. Because of the inherent difficulties of these problems, most solution 
methods that have been proposed are heuristics.” They further noted that, while “Early attempts 
to apply simple heuristics… produced nice results from simulation studies, [they] … were rarely 
implemented and used in spreading operations. Recent models are solved with more 
sophisticated local search techniques… [and] are showing much promise to assist planners in 
making routing decisions for spreading operations in practice.”  
 Perrier, Langevin and Campbell (2007) conclude that “considerable work remains to be 
accomplished on the design of fast heuristic algorithms that produce good approximate 
solutions, and on the development of more comprehensive models that address the integration 
of depot location models with spreader routing decisions.”   
 
Route Evaluation Needs 
 
In their conclusions, Perrier, Langevin and Campbell (2007) suggest where research should be 
focused with regard to the spreader routing problem. However, they do not describe how to 
determine what makes for a “good approximate solution.” Alprin (1975) used a simulation to test 
the performance under uncertainty of two alternative heuristic solution methods under “Various 
combinations of resources used in snow removal, such as the number and location of salt 
stockpiles or the number and type of salt spreader trucks….” 
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  This thesis research was formally published by Cook and Alprin (1976) and their paper is 
frequently cited in the literature review of many subsequent papers researching the 
snowplow/spreader vehicle routing problem. Unfortunately, it appears that the simulation 
originally developed by Alprin (1975) was not regularly employed by these latter research efforts. 
However, if his simulation could be reprised and implemented in a modern, visually-oriented 
simulation language, it would be of great benefit for evaluating the relative performance of 
alternative snowplow route selection solution techniques. 
 
THEORETICAL AND MODEL DEVELOPMENT 
 
Given the clear need to arm urban planners with modern modeling and simulation tools for 
evaluating their snow and ice removal plans, we next lay out the analytical and visualization 
capabilities of a modern discrete event simulation. From this basis, we replicate Alprin’s (1975) 
snow and ice removal simulation; specifically, the two cases employed in his analysis – 
assigned routes and shortest distance route assignments. 
 
Simulation and Visualization 
 
In broad terms, there are three distinct established frameworks for modeling dynamic 
interactions among multiple entities: discrete event simulation (DES), system dynamics (SD), 
and agent-based modeling (ABM). Each framework provides distinct capabilities. As discussed 
in Brailsford (2008) and the references provided therein, DES provides a more flexible means 
for quantitative analysis and the resulting models are quite detailed and associated with the 
significant set-up costs both in terms of time and money. In contrast, SD models are more 
useful for understanding the “big-picture”, with an emphasis on qualitative analysis as SD 
diagrams are deemed to be more easily understood by the clients and managers. SD models 
are usually easier to construct than DES, but they lack the quantitative flexibility of DES.  

ABMs are relative newcomers to the simulation world and they provide even more 
flexibility than DES. The main reason for this flexibility is ABM’s reliance on local (distributed) 
rules for the simulation sequence, and the possibility to include agents with continuously 
changing state-space. In contrast, DES (as the name implies) is focused on discrete events (i.e., 
discrete changes to the system’s state) and it generally relies on a centralized list of events that 
has to be maintained in chronological order during the simulation. The flexibility of ABMs comes 
at a price, as the resulting models are usually even more detailed and less structured than DES, 
and therefore are more computationally intensive and more difficult to create. At the same time, 
the ability of implementing locally distributed rules for updating an agent’s state can reduce the 
need for computational resources if the level of abstraction is chosen judiciously (Yu et al. 2011). 
As commercial tools evolve to satisfy their analytical customer’s needs, the boundaries between 
these modeling frameworks are often blurred. 

For historical reasons, most DES research models are based on concepts derived from 
queuing theory with activities, resources, and queues providing the fundamental building blocks 
of the model. Stochastic Petri nets (SPNs) provide an alternative means to create DES models. 
Therein the system is comprised of individual components that can change their states and can 
trigger or prevent the state changes of other components. As a result, while an activity can be 
interpreted as a time delay between the state transitions for a given component, the concepts of 
resources and queues are derived properties, rather than fundamental properties. SPNs and 
their parent framework, Petri nets, are popular tools in computer science as they provide a well-
structured and visual means for analyzing complex interactions among components such as 
synchronization and concurrent operations. However, their commercial applications in the 
context of DES are very restricted to date, as practicing engineers find them too abstract and 
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difficult to understand. Different flavors of SPNs (developed mainly in academia) have come and 
gone for the past 30 years, and commercial tools are mainly used internally by the more 
analytically-oriented companies (such as Siemens or Total).  

In this paper a new version of SPNs, Abridged Petri Nets (APNs), is utilized. APN is a 
new graphical framework for modeling the stochastic behavior of complex systems that consist 
of multiple interacting components (Volovoi, 2013). This framework can be considered as a 
derivative of SPNs (Marsan, 1990) that aims at retaining SPN’s versatility in terms of modeling 
power, while streamlining the choice of the modeling building blocks. The visual clutter and 
often confusing choices that are often perceived as the major obstacle to the larger success of 
SPNs are reduced (Bowden 2000), resulting in simpler and more transparent models that can 
be built using only a graphical interface. 

The following essential properties of APNs can be identified: 
• An APN is defined as a network of places (denoted as hollow large circles) that are 

connected by directed arcs (transitions). Changes in the system's state are modeled 
by a transition firing: i.e., moving a token from the transition's input place to its output 
place. The combined position of tokens in the net at any given moment represents 
marking of the net and fully specifies the modeled system. 

• Each transition has no more than a single input and single output place (a transition 
can also have no input place, providing a source of new tokens every time it fires, or 
it can have no output place, providing a sink for tokens; upon the firing of such  a 
transition, a token is removed from the net).   

• Each token can have a discrete label (color) that can change when the token moves. 
In addition, tokens have continuous labels (ages) that can change both when tokens 
move, and with the progression of time while a token stays in the same place 
(Volovoi 2004).  

• A transition is enabled or disabled based on the combined marking of the input 
places of the associated triggers (inhibitors and enablers). Inhibitors are depicted as 
arcs originating at a place and terminating at a transition with a hollow circle.  An 
inhibitor of multiplicity k disables a transition that it terminates at if the number of 
tokens in its input place is at least k.  An enabler (depicted as an arc originating at a 
place and terminating at a transition with a filled circle) is the opposite to an inhibitor:  
a transition is disabled unless an enabler of multiplicity k has at least k tokens in its 
input place. Triggers can be color-specific (and therefore enable only tokens in a 
place of a certain color, or act only if there are a specified number of tokens of a 
given color in their respective input places, or both).  

• Transitions have color- and age-dependent policies that specify the delay between 
the moment when the token is enabled and when it is fired. 

• If a token-transition pair is enabled, a firing delay is specified based on the 
combination of token and transition properties. If the token stays enabled throughout 
the delay, after this delay expires the token is fired. If there are multiple enabled 
tokens in the same place, they can all participate in the firing “race” in parallel. 
Similarly, the same token can be involved in a race with several transitions. If a 
token-transition pair is disabled, the firing is preempted (however, the aging label of 
the token can change as a result of being enabled for a finite amount of time).  

• The delays can be deterministic (including zero delay) or follow any specified random 
distributions.  

• The performance of the system is based on the statistical properties of marking in 
the system, and can be evaluated using discrete-event simulation or differential 
equations (including, but not limited, to finite-difference solutions). “Sensors” at each 
place can evaluate the chances and the number of times a given threshold of the 
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number of tokens is crossed, or evaluate the time-averaged number of tokens at a 
given place. In the latter case, the correlation matrix for all results can be evaluated 
as well, providing the mechanism for calculating the variances (in addition to the 
mean values) of global metrics that aggregate the readings of individual sensors. 

• Hierarchical constructions for combining multiple subnets are used to model large-
scale systems. 

• Fusing places, commonly used in hierarchical Petri nets (see for example, (Jensen, 
1993)) are employed to connect different parts of the model. Fused places appear as 
distinct graphical entities during the model construction, but represent the same 
entity in simulation. 

 
Alprin’s Simulation Parameterization 
 
The following problem is considered following Alprin (1975). There are 30 routes divided into 
multiple segments. Each segment is defined as a single unit of a street that can be fully treated 
in both directions by a single truckload of salt (four tons). There are also eight-ton trucks that 
can cover two segments at a time before reloading. For regular streets, a single segment is two 
miles long, and for highways it is one mile (as the highways require twice as much salt).  

The time to complete a segment is considered to be the same for regular streets and 
highways. There is a single salt pile location where trucks need to travel to reload. Table 1 
shows the number of segments and average travel time to/from each location to a given route. 

 
Table 1:  Transit time and number of segments for each route 
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There are 27 four-ton and three eight-ton trucks available. The loading time for each truck and 
duration of each segment are parameters of the models. As discussed in the next sections, 
various operational logics for vehicle utilization are considered. In addition, the possibility of 
failure of the truck is included in the model (with the failure rate as a model parameter).   
 
Replicating Alprin’s Simulation Logic 
 
Two different APN models are created reflecting different vehicle utilization logic. Case 1 
corresponds to a rigid assignment of vehicles to each route. In contrast, Case 2 corresponds to 
flexible vehicle utilization where trucks are assigned to different routes dynamically as needed.  
 A portion of the Case 1 APN model is shown in Figure 1. Only one street is shown with 
the full model consisting of 15 pages with two streets per page. Sub-models are connected by 
means of fusing three places: “Loaded”, “Queue”, and “Street Counter”. As a result, tokens 
representing each vehicle are merged at the “Queue” place, indicating that that there is a 
common loading facility. When the treatment of a street is complete, a token is deposited into 
“Street Counter,” so associating a sensor with that place enables one to monitor the overall 
progress of operations (see the results section). In Case 1 each vehicle is represented by a 
token with a unique color (i.e., an integer label i=0,…, 29). The “priority” transition is color 
sensitive (so that only tokens with the matching color can move along the transition 
corresponding to a given route).  
 

Figure 1: Single route portion of APN model (dedicated vehicle allocation) 

 

Loaded

Queue

En Route

Seg. Compl.

Street Cleaned
(Fourth Segment)

Start Segment

Return

Street CounterLoading Salt

Start First Segment
Completed

Second Segment
Completed

Third Segment
Completed

�¡
�¡

�¡ �¡ �¡

�¡

¡

¡
transit

loading

priority

transit

segment

failure

Incomplete

21



Volovoi, Peterson Simulation to Evaluate Urban Snow and Ice Removal 
 
 

 

Once the vehicle is committed to a route the corresponding token moves to the “Start 
Segment” place. When the segment is completed, the token moves to the “Seg. Compl.” place. 
The token stays there just long enough to facilitate a move of the token representing the 
progress along a given route (depicted along the bottom of the diagram in Figure 1, note the 
corresponding enablers).  

For the routes where four-ton trucks are employed, the token stays in the “Seg. Compl.” 
place 3ε while it takes 2ε to move the progress token one spot to the right. For the routes with 
eight-ton trucks the token stays in the “Seg. Compl.” for 5ε units of time, ensuring that two 
segments of the route are accounted for. Here ε is a small fixed delay (in the implemented 
model 1e-7 minutes is used). The model depicted has four street segments to clean/treat, so for 
each route the number of segments (and the number of places that lead to the “Street Cleaned” 
place) varies as shown in Table 1. If a vehicle fails during the segment cleaning, the vehicle 
returns to the base (the salt pile location) and no progress for that segment is recorded (it is 
assumed that the problem is fixed at the base and it takes as much time to fix the problem as to 
fill the truck with salt). Alternative repair times for failed trucks can be easily implemented. 

Figure 2 shows the APN model for Case 2. As in the Case 1, this diagram shows one 
route out of 30 modeled. The main difference is that in this model several vehicles can attend to 
the same route. The number of these vehicles is controlled by the presence of tokens in the 
“Uncommitted” place. The priority transition controls the priority for selecting routes. At any 
given moment the number of vehicles committed to a given route can be less than or equal to 
the number of untreated segments on that route. When a token representing a vehicle moves to 
the “Register” place it triggers an outflow of tokens from the “Uncommitted” place. In the 
considered model there are two colors of tokens, where the color represents the type of vehicle 
(four- vs. eight-tons).  

 
Figure 2 Single route portion of APN model (flexible vehicle allocation) 
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The fixed delay for transition from the “Register” to the “En Route” place is color 
dependent: for regular four-ton trucks (color 0) the delay is 3ε, so that only one segment is 
committed, and only one token will be moved from the “Uncommitted” to the “Synching” place, 
for tokens of color 1 (representing eight-ton trucks) this delay will be 6ε enough to move two 
tokens out of the “Uncommitted” place). A similar color-dependence is implemented to account 
for either one or two tokens when the outcome of covering a given segment is determined (see 
the “Choice” place): if the segment is successfully treated one token for color 0 and two tokens 
for color 1 are moved to the “Segments Cleaned” place. On the other hand, if a vehicle failure 
occurs then those tokens move back to the “Uncommitted” place. The model shown in Figure 2 
is for two segments, but unlike the APN model for Case 1, adding segments does not require 
any addition of places and transitions: for k segments there should be k tokens in the 
“Uncommitted place and the enabler originating from the “Segments Cleaned” should have 
multiplicity k.  

 
RESULTS 
 
A sample of the results is discussed below. Here each street segment is completed on average 
in 15 minutes with a standard deviation of 2.186 minutes (see Alprin, 1975) and a lognormal 
distribution is used. There are no vehicle failures and the salt pile loading time follows a 
lognormal distribution with mean value of 1.5 minutes and standard deviation of 1.5 minutes. 
 
Case 1 – Assigned Routes 
 

Figure 3: Results for Case 1 – assigned routes 

 
 
Figure 3 shows the expected number of completed routes as a function of time as well the mean 
amount of time vehicles spend in the queue for loading. One can observe that for the 
parameters specified the loading and waiting time has a negligible effect. One street (route 29) 
has not been completed even after 2000 minutes (i.e. 33 hours). This is expected as using 
deterministic durations for this route and ignoring the queuing effects for salt loading leads to an 
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estimate of 2270 minutes for the completion of the route.  Shown here and below the results of 
one million Monte Carlo simulation runs, which takes under 10 minutes on a Mac Air (2 MHz i7).  
 
Case 2 – shortest distance route assignment 
 
Figure 4 shows the expected number of completed routes as a function of time as well the mean 
time vehicles spend in the salt pile queue for loading. In this case, all streets are expected to be 
treated after about 720 minutes (12 hours). Again, these results match quite well the 
deterministic calculation that ignores the effect of queuing or any other inefficiencies, and thus 
provides an effective lower bound. This calculation simply adds up all deterministic times for 
travelling and dividing them among available trucks, yielding 625 minutes for the completion of 
all tasks. 

In comparing the APN simulation results to those presented in Alprin (1975) it is clear 
that while the ratio of improvement is similar (or even higher), the results obtained indicate that it 
will take significantly longer to complete the treatment of the streets than the original simulation 
conducted by Alprin. The 12 experiments conducted by Alprin resulted in 8:08 hours and 5:14 
hours average times for cases 1 and 2, respectively. The sources of these differences are likely 
to reside with the Alprin’s deployment of input parameters and can be easily resolved for 
specific applications. 
 

Figure 4: Case 2 - dynamic vehicle routing 
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the expected number of vehicles in the queue for loading as a function of time. The baseline 
parameters are compared to when the mean is doubled while keeping the standard deviation as 
the baseline, and also to the case where both mean and standard deviation are doubled. One 
can readily observe that the mean is significantly more important than the standard deviation.  
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Figure 5: Considering the loading time impact on Case 2 queue length 
 

 
 
Figure 6 shows the impact of those differences on the number of routes completed as a function 
of time.  
 

Figure 6: Considering the loading time impact on Case 2 route completion 
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Finally, let us consider the possibility of vehicle failures for the shortest distance route 
assignment scenario. Figure 7 shows the results when vehicle failures follow an exponential 
distribution with mean value of 30 minutes. One can observe the following three effects:  

• Despite retaining deterministic transit times, the introduction of random vehicle 
failures provides the “mixing” to the associated process, smoothing out any 
deterministic effects 

• Since the failure rate is fairly high, the impact on the completion time is also very 
significant (the time effectively doubles) 

• Although queuing remains relatively insignificant it too has noticeably increased. 
 

Figure 7: Introducing the possibilities of failures to Case 2 

 
 

 
DISCUSSION AND CONCLUSIONS 
 
The APN simulation model replicates Alprin’s (1975) original snow removal simulation and 
quantifies the performance of a fleet of snowplows. As shown above, the simulation results 
mirror the general findings and conclusions that Alprin presented in his thesis, while the 
graphical nature of the current model allows exploration of various “what-if” scenarios on the fly. 
 From a broader perspective, given these results, it is clear that modern discrete event 
simulations can offer governmental transportation planners a great deal in terms of effectively 
and efficiently employing their snow removal assets in the wake of a snow and/or ice event. 
Furthermore, the visualization capabilities of modern discrete event simulations enable vehicle 
managers to rapidly uncover where bottlenecks are likely to occur (e.g., at the salt pile) as well 
as the tyranny of distance in terms of getting even the most remote street segments cleared and 
safe for passage in a timely manner. 
 Clearly, this study has barely scratched the surface of the possibilities that modern 
climatological, GPS and GIS data systems, used in conjunction with state-of-the-art simulation 
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capabilities offer urban planners. In the course of this research, a number of additional 
recommendations for future research became apparent: 
 

1. The snowplow simulation, like any model, is very data dependent. While this 
research employed Alprin’s parameterization (to the degree that the parameters 
were documented), it would be very useful to replicate his data from another locale 
and repeat this analysis. 

2. It would improve the model’s validity if the historic data collection from step one could 
be associated with the actual time required to clear/treat roadways in the locale 
under study. This would be essential for truly gauging the accuracy of the model as it 
currently exists, as well as helping to identify shortfalls in the model’s design. 

3. The general APN snow removal model is very robust and could also serve future 
researchers well as an unbiased “sandbox” where alternative vehicle routing 
schemes could be evaluated. 

4. Finally, this model could be adapted to assist urban planners in terms of making 
strategic, tactical and operational resourcing decisions. Employing a simulation such 
as this would bring a level of consistency and reproducibility to local government 
resource managers that promises an even better return on taxpayers’ dollars. 
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