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To accurately predict the dynamic behaviour of spanwise uniform, non-homogeneous,
anisotropic beams with arbitrary cross-sectional geometry is an important part of
engineering analysis. Classical one-dimensional beam theory fails in this endeavour, and
development of more sophisticated one-dimensional theories is an important task. A basis
for development of improved one-dimensional theory is the dispersion curve analysis. A
means to find the dispersion curves is discussed in this paper. The code is developed to
calculate the dispersion curves, as well as corresponding mode shapes. The code is based
on finite element discretization over the cross-sectional domain. Use of this code provides
benchmark results for the testing of any existing one-dimensional theory, as well facilitating
the construction of new one-dimensional theories. Dispersion information can be also
useful in non-destructive evaluation. As an example of a case where non-classical effects
are particularly important, results obtained from this code for an I-beam are presented.
Qualitative comparison with the well-known case of isotropic rectangular beam is provided.
Features that are common for all beams are emphasized along with pointing out qualitative
differences that exist for beams other than rectangular or circular.
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1. INTRODUCTION

From the point of view of elastic wave propagation, prismatic beams represent waveguides,
i.e. bodies with two or more parallel boundaries, that introduce one or more characterstic
dimensions into the problem. This leads to a dependence of frequency on wave length for
harmonic waves or wave dispersion. The equation describing this dependency is called the
frequency or dispersion equation. There are two main reasons for obtaining dispersion
information for beams:

(1) Any beam theory ought to provide a reasonable approximation for the dispersion
relationships in order to capture the elastic behaviour of beams correctly. Thus,
knowledge of the correct frequency spectra is crucial for the assessment of the
validity of a beam theory for a given cross-sectional properties. For example,
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quantification of the range of applicability of the St-Venant effect is readily
provided.

(2) Dispersion information could be useful in its own right, e.g. when monochromatic
stress waves are excited in beams, as in ultrasonic non-destructive evaluation.
Sufficiently comprehensive information about the frequencies and mode shapes
permits one to predict the reflection of such a stress wave from an end with various
boundary conditions. This in turn provides tools for the development of a strategy
for detection of defects in such beams by transmitting an optimal combination of
waves that propagate along the beam and analysing the effects of their scattering
due to the presence of defects.

The range of applicability of most existing one-dimensional (1-D) beam models in
solving 3-D problems of dynamics of beams is restricted to the case of long waves
(a/l�1, a0 the diameter of beam, l0 the characteristic wavelength) and low frequencies
((av)/z(G/r)�1, v0 characteristic frequency, r0 density, G0 characteristic elastic
modulus). In many engineering problems, however, the need arises to study cases of
high frequencies [(av)/z(G/r)1 1] and short waves (a/l1 1). These limitations are
especially stringent for composite beams. The term ‘‘classical beam theory’’ in the present
work refers to the combination of Euler–Bernoulli theory for extension and bending and
St-Venant theory for torsion.

The first dispersion equations for circular beams were obtained from 3-D elasticity by
Pochhammer [1] and Chree [2], while the analogous problem for plates in plane strain was
investigated by Rayleigh [3] and Lamb [4]. The discrepancy between the 3-D dispersion
relationships and those given by classical beam theory prompted Rayleigh [5] to take into
account the inertia of cross-sectional rotational motion in order to improve the dispersion
equation given by classical beam theory. Love [6] later derived beam equations of motion
with the Rayleigh correction. Note that an approximated theory given by Chree [2], where
the Bessel functions were replaced by the first two terms in their power expansion, yielded
results that are practically identical to the Rayleigh frequency equation. Timoshenko [7]
then generalized classical 1-D beam theory by introducing shear deformation. Timoshenko
theory provided better correlation with experimental data, particularly for the dynamics
of beams. The removal of the Kirchhoff assumption and introduction of the new degree
of freedom associated with rotation of a cross section permitted the modeling of the first
flexural thickness shear mode for long waves, i.e. the lowest high-frequency mode for
circular cross sections (see for example reference [8]). Still, the correlation with 3-D
elasticity was poor for some other cross sections (especially for open ones). Moreover, even
for circular or rectangular cross sections, it was not clear how to model other
high-frequency modes, nor how to describe the short-wave effects.

The next step for construction of an improved 1-D theory was accomplished by Mindlin
and his collaborators. Logically it could be traced from the derivation of Mindlin’s
first-order shear deformation theory for plates [9], where the so-called ‘‘cut-off’’ frequency,
i.e. the non-zero frequency of thickness-shear motions corresponding to very long waves,
was matched with the values given by the Rayleigh–Lamb solutions of 3-D elasticity.
Recall that Reissner’s approach to the same problem [10, 11] involved an assumed stress
distribution and application of a complimentary variational principle without
consideration of dynamics. Both approaches provided remarkably close values for the
shear correction factor (p2/12 and 5/6 respectively). It is noted that the Mindlin approach
was extended recently to laminated anisotropic shells and plates in reference [12].

The first approximate theory to take into account the coupling between longitudinal and
radial modes in a circular cylinder with free lateral surfaces was constructed in reference
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[13]. Later, a three-mode system of 1-D equations was derived in reference [14] for axially
symmetric motions of an elastic rod of circular cross section. A new mode called ‘‘axial
shear’’ was introduced therein that was fully coupled with two modes from reference [13].
This additional mode had a dominant axial displacement field that was quadratically
distributed in the radial direction and had one circular nodal line at r= a/2, where a is
radius of the cross section and r is the radial coordinate. The following technique was used
to obtain 1-D equations. The displacement field was expanded in terms of Jacobi
polynomials in the radial direction. Three 1-D variables, called potential functions, fi ,
were introduced, these satisfy the Helmholtz equations, so that the displacement field can
be expressed in terms of fi . In addition, four correction factors were introduced, which
were used to match the cut-off frequencies and curvatures at cut-off of the axial shear and
radial modes as derived from both approximate and exact theories. It was shown in
reference [15] that the resulting 1-D model correctly described waves reflected from the free
end due to the incident extensional wave. For a narrow band of frequencies this incident
wave gives rise to a standing wave with decreasing amplitude away from the beam end.
This phenomenon was called ‘‘end resonance’’ and was observed experimentally in
reference [16]. A comprehensive numerical study by using a collocation method of these
curves was given in references [17, 18]. Later, the three-mode theory was extended to
transversely isotropic circular cylinders in references [19] and [20].

The underlying idea promoted by Mindlin and his followers for the development of
approximate theories was the following: 1-D beam theory should give a satisfactory
description of the wave propagation in an infinite beam, and the main dynamic
characteristics of an infinite beam are reflected in the behaviour of the dispersion curves.
Therefore, once a way to accurately approximate the dispersion curves is found, a
simplified model of beams based on this approximation can be created. Only by succeeding
in that task could one expect a reasonable agreement between 3-D elasticity and a
corresponding 1-D beam model. A similar conclusion has been reached independently and
almost simultaneously in the physics of solids, where analysis of dispersion curves of
crystalline bodies was employed to improve classical elasticity theory (see a comprehensive
review in the monograph by Kunin [21]).

1.1.    2-       

Apparently, finite element discretization over the cross-section of a beam for calculation
of the dispersion relationships was employed for the first time in reference [22].
Methodology for obtaining dispersion curves for the propagating modes (i.e. modes for
which the wave numbers are real) for arbitrary cross-sectional geometry was presented
therein, along with the examples of both isotropic as well as orthotropic square cross
section.

The complete set of dispersion curves including the ‘‘evanescent’’ branches (i.e. those
which pertain to complex wave numbers) was calculated using 1-D finite elements for
circular anisotropic cylinders and composite plates in references [23] and [24], respectively.
A slightly different 1-D finite element formulation which maintains continuity of not only
displacements by tractions as well was used first for plates in reference [25] and then for
circular cylinders in reference [26]. This approach leads to a generalized eigenvalue problem
of fourth order and it is advantageous for recovering stress fields corresponding to the
modes of vibrations.

2-D finite elements were used to study decaying modes in static behaviour of beams in
references [27] and [28]. Both works contained open cross section examples with the latter
work focusing on the restrained torsion problem. Borri and his collaborators (see
references [29] and an extension of that work to initially twisted beams [30]) studied the
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statics of anisotropic beams with basic equations being derived from the virtual work
principle. Evanescent static modes (or ‘‘extremity solutions’’ as they were referred in those
works) were also studied therein.

In reference [31] a quadratic eigenvalue problem was considered that is identical to the
one studied in the present paper. Wave reflection from the free end was studied therein,
and examples with rectangular cross sections were presented. Later, pretwist was included
in the formulation, and its influence was studied in the examples of and rectangular cross
sections [32]. The work of Hladky-Hennion [33] was focused on circular waveguides, i.e.
when waves propagate in the circumferential direction. Triangular and rectangular cross
sections were considered therein. The procedure was similar to the one employed in
reference [34]. The latter work was restricted to thin-walled beams and shell theory was
used. In both works displacements along the axial coordinate were assumed to be shifted
by a phase of p/2 compared to the other two displacements. That leads to an eigenproblem
with real symmetric matrices in the isotropic case. It is important to recognize, however,
that this procedure provides no advantage for studying general anisotropic beams (see the
discussion below). In reference [35] sets of dispersion branches for real wave numbers were
presented for an orthotropic rectangular cross section.

Finally, as an illustration of application of the dispersion curves let us note [36] where
the eigenfunctions were first obtained either by the so-called propagator matrix approach
[37] (for laminated isotropic cylinders) or using finite elements in the radial direction [23]
(for anisotropic cylinders). Then the expansion with respect to these eigenfunctions was
used to evaluate the complex amplitudes as well as the energy flux associated with the
reflected waves at the free end of the cylinder. This evaluation was conducted using
both variational and least-square methods and the former technique was found to be
superior.

This brief overview of the relevant literature is intended to demonstrate that, while
the need for dispersion information was appreciated by many authors, to our knowledge
prior to this work dispersion curves were studied almost exclusively for rectangular or
circular cross sections, while dispersion information for other important sectional
geometries remains very scarce. The intent of the present paper is to demonstrate
fundamental differences in the topology of the dispersion curves for various cross
sections. Further, the connection of these differences to various refinements of classical
beam theory and the range of validity of classical theory itself are discussed. Intended
applications of the developed tools include capabilities to analyse with high precision
complicated composite cross sections such as realistic helicopter rotor blades, which
places stringent requirements on the versatility of the code. Therefore, it is deemed
appropriate to describe in sufficient detail the algorithm which satisfies those requirements
and allows calculation of dispersion information for a wide range of frequencies and wave
numbers.

2. PRESENT APPROACH

Let us consider an infinite prismatic beam that occupies a domain

V= {−aQ x1 Qa, (x2, x3)$S}

with some prescribed cross section S, and where x1, x2, x3 are Cartesian coordinates so
that x1 is aligned with the beam axis; 1V is the boundary of V. The following procedure
which leads to a quadratic generalized problem is pretty standard, so it will be covered
very briefly. Notations are taken from references [38] and [39] with the differences
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emphasized herein. The variational formulation of the 3-D elasticity problem requires
minimization of the following functional per unit length:

2I= �GTDG�− �rv̇Tv̇�, (1)

whre v is the 3-D vector of displacements, dots refer to time derivatives, �·� to integration
over the cross section, D is the 6×6 matrix of material coefficients, r is density and
G=kG11, 2G12, 2G13, G22, 2G23, G33lT is the 6×1 strain matrix that can be split into two
parts:

G=Ghv+Glv', (2)

where prime refers to the partial derivative with respect to axial coordinate, while Gl and
Gh have the form

K L K L0 0 0 1 0 0
G G G G1

1x2
0 0 0 1 0G G G G

G G G G
G G G G1

1x3
0 0 0 0 1

G G G G
G G G GGh = 0

1

1x2
0

, Gl = 0 0 0
. (3)

G G G G
G G G G

0
1

1x3

1

1x2
0 0 0G G G G

G G G G
G G G G0 0

1

1x3
0 0 0

k l k l
The Cauchy conditions at t=0 need not be specified at this stage of derivation, and the
lateral surfaces of the beam are considered to be free of tractions.

Due to the fact that properties of prismatic beams do not depend on the axial coordinate
x1, fundamental beam solutions have the form

ṽ(x2, x3) e(ikx1 −vt), (4)

where k and v are wavenumber and frequency, respectively. These fundamental solutions
can be found by minimizing the complex functional

2I	 = �ṽT(GT
h − ikGT

l )D(Gh + ikGl )ṽ�−v2�rṽTṽ�. (5)

A nontrivial solution of this problem exists only for particular values of k and v. We refer
to such values, plotted in the space of k and v, as dispersion curves and to the continuous
pieces of them as branches. It is convenient to use 2-D plots with the left part reserved
for F(k) and the right part for R(k). (Due to the intrinsic symmetry of the problem
explained below, both these quantities can be considered positive without a loss of
generality; see Figure 1.) Branches with complex k are then depicted by two curves, one
in the left of the plot and one in the right. The corresponding set of eigenfunctions
comprises an infinite-dimensional basis for beam solutions. Discretization over the cross
section allows for the representation of the displacement field

ṽ(x2, x3)=S(x2, x3)V. (6)

Here, S is a 3×N matrix of shape functions, and V is N-dimensional vector of nodal
displacements. Substitution of equations (4) and (6) into equation (5) yields

2I	 =VT(E− ikEl + k2Dll −v2M)V, (7)
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Figure 1. Dispersion curves (frequency spectrum) for anisotropic I-beam, 960 6-noded elements.

where symmetric matrices E, Dll , M, and the skew-symmetric matrix El are given by

E= �[GhS]TDGhS�, El = �[GhS]TDGlS�− �[GlS]TDGhS�,

Dll = �[GlS]TDGlS�, M= �rSTS�. (8)

All these matrices are readily available from VABS [40], a 2-D finite element code that
uses 6- and 8-noded isoparametric elements.

Extraction of the fundamental solution in the form equation (4) is equivalent to the
eigenvalue problem

(E− ikEl + k2Dll −v2M)ṽ=0. (9)

Many authors (see, for example, references [33] and [34]) slightly altered equation (4)
looking instead for a solution of the form

8v̂1

v̂2

v̂39= 8iṽ1

ṽ2

ṽ39. (10)

This is certainly advantageous for isotropic materials. As shown in Appendix A this leads
to the eigenvalue problem

(E
 + kE
 l + k2D
 ll −v2M
 )vx =0, (11)

where all participating matrices are real and symmetric. Moreover, all propagating modes
(i.e. eigenvectors corresponding to real k) are also real. However, for a general anisotropic
material this is not always the case (see Appendix A and also the discussion on the related
issue pertaining to anisotropic plates [41]). Before proceeding with the description of the
numerical procedure, let us point out some symmetry properties of equation (9).

(1) If k is an eigenvalue with the right eigenvector u, then by taking the complex
conjugate of the both sides of equation (9) it becomes evident that −k� is also an
eigenvalue with the right eigenvector ū.
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(2) If k is an eigenvalue with the right eigenvector u, then the transposition of the
equation leads to the conclusion that −k is also an eigenvalue with the left
eigenvector uT.

(3) Combination of the previous two properties renders k� being an eigenvalue of the
problem if k is an eigenvalue.

It is convenient to introduce ‘‘state space’’ notation:

P0$ 0
−Dll

I
El% , Q0$I

0
0
S% , (12)

l0
1
ik

, z06iku
u 7 , (13)

where S0v2M−E, and I is the identity matrix. Then

Pzi = liQzi (14)

poses a standard generalized eigenproblem that is equivalent to the one given by equation
(9). Let us note that at this point the matrix Q is real and symmetric, but it is not positive
definite. Although this problem can be solved directly, there is one generic problem for
all iterative procedures of finding eigenvalues that rely on Krylov’s subspace concept:
unless the eigenvector associated with the largest eigenvalue is eliminated it will inevitably
corrupt the calculation of the smaller eigenvalues. In the case considered the elimination
of the largest eigenvalue was not feasible. Moreover, due to the above-mentioned intrinsic
symmetry problem, even fewer distinct eigenvalues can be recovered. All these problems
can be bypassed by introducing a shift into the complex plane of k.

A complex shift allows one to look for k in any specified region of a complex plane in
the neighborhood of a ‘‘guess’’ k0, so that

k= k0 + k	 . (15)

Casting our eigenvalue problem in terms of k	 we can represent it in a form which is similar
to the original problem, with new complex matrices D	 ll , E	 l , S	 :

D	 ll 0Dll , E	 l 0El −2ik0Dll , S	 0 k2
0Dll + ik0El −S. (16)

The fact that in this case we have to operate with complex matrices does not constitute
an insurmountable obstacle, and a straightforward generalization of two-sided Lanczos
recursion to the complex variables was then implemented. On the elementary level of the
computer simulation for a given v, and a guess for k we calculated the k closest in the
complex plane to the guess. Precision usually decreases if the initial guess is at
approximately the same distance (or far away) from the two closest roots. In this case the
guess has to be changed appropriately. It is interesting to note that precision also decreases
if the initial guess is too close to the exact root, which results in ill-conditioned matrices.

In light of the above the following algorithm is used for obtaining a full picture of
dispersion curves:

(1) Determining the intersections of the dispersion curves with the plane v=0. For zero
v we make several initial guesses for k in a desired region of complex plane of k.
Those guesses should cover this region sufficiently densely to avoid skipping a
branch.
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Figure 2. Dispersion curves (frequency spectrum) for an isotropic I-beam, 960 6-noded elements.

(2) Improving the accuracy of calculation of the starting point. This is done by adjusting
the initial guesses (using results of step 1). The starting points of the branches are
then determined.

(3) Continuing the branches. Each branch requires a separate iterative procedure that
starts from the points obtained in step 2. We appropriately increment v and find

Figure 3. Dispersion curves (frequency spectrum) for an isotropic square cross section, 400 6-noded elements.
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Figure 4. First ‘‘non-classical’’ (Vlasov) mode for isotropic I-beam: F(bk)=0·2283, h/b=0·04.

the corresponding k, thus following the branch into the region of high frequency
v. Intersections of branches require special monitoring (see below).

The eigenvector for each eigenvalue obtained allows us to recover the corresponding
mode shape, i.e. the acutal 3-D distribution of the displacements for a given cross section.
The constructed mode shape helps to ensure that we are not jumping from one branch
to another (since branches located even very closely to each other possess very different
mode shapes). The relative error, as a result of back-substitution of the calculated
eigenvector into the original problem, is typically of the order 10−7 or even lower.

Figure 5. Scaled up out-of-plane part of a first ‘‘non-classical’’ (Vlasov) mode for isotropic I-beam.
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Figure 6. ‘‘Main’’ part of the extensional mode for antisymmetric I-beams.

3. RESULTS AND DISCUSSION

In the beginning of this section certain features of the dispersion sets that are common
for all beams are described. This provides a convenient interpretation of the classical beam
theory. Next, low frequency propagating modes of vibration are considered in some detail
to emphasize the differences and similarities for isotropic and anisotropic beams. Finally,
specific examples of the dispersion sets are presented and connections between various
cross sectional properties and improved 1-D theories are investigated.

3.1.    

Figures 1, 2, and 3 depict typical sets of dispersion curves. For all these sets for small
v, there are only four real values of k representing an ‘‘interior’’ stress state which is
described by classical beam theory. For v=0 (statics), all these branches converge to point
k=0, which corresponds to the vicinity of the origin. All other values of k are complex,
and F(k) has the sense of a decay rate from the left end of the beam if F(k)q 0, and from
the right end otherwise. There are only two such branches that emanate from the origin
into the area of purely imaginary k. They correspond to the hyperbolic part of bending
motion and can be represented either by Euler–Bernoulli or Timoshenko theories. Thus,
the classical theory of beams with free lateral surfaces can be viewed as a truncated
representation of the displacement field by the use of the first four of the basis
eigenfunctions. It is ‘‘exponentially’’ exact for small v in the sense that all corrections stem
from the end effects, which decay exponentially as they penetrate in the interior of the
beam. This observation naturally provides the range of validity for a classical theory: v

has to be smaller than the first cut-off frequency, since otherwise another propagating
mode must be taken into consideration. This cut-off frequency, generally speaking, is of
order (zG/r)/a (see below for discussion on variation of this frequency for different cross
sections) which explains the limits mentioned in the introduction part.

There is one subtlety here that needs to be pointed out. In statics there are 12 zero roots
for k in equation (9). However, there are only 4 distinct eigenvectors (modes)
corresponding to those roots: three translations and torsional rotation of a cross section
as a rigid body. In particular, 2 rotations of a cross section associated with bending do
not constitute those modes. This can be shown first by noting that for k=0 from equation
(9) an eigenvector should belong to the null space of E. This matrix is associated with



0.0

6.0

5.0

4.0

3.0

2.0

1.0

4.0 2.0 0.0 2.0 4.0 6.0

Imaginary ka Real ka

N
o

rm
a

li
ze

d
 f

re
q

u
en

cy
  

  
 N

=
  

  
/ 

  
S

A

B

C

    1111

Figure 7. Scaled up ‘‘correction’’ part of the extensional mode for antisymmetric I-beams.

strains in the cross section alone, so that displacements in axial direction do not affect those
strains. This in turn can be visualized as a projection of the 3-D displacement field of the
cross section onto the cross section itself. Then it becomes clear that rotation of a cross
section associated with bending will result in a ‘‘shrinking’’ of the projection, which will
clearly entail non-zero strains.

It is also noteworthy to mention that, as can be observed from equation (9) for purely
imaginary k, eigenvectors are real as long as E−v2M is a positive definite matrix. In
particular this is always true in statics (v=0).

Figure 8. Dispersion curve for bending of square isotropic beam n=0·3: ——, 3-D simulations; ——,
Timoshenko; - - - , Euler–Bernoulli.
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Figure 9. ‘‘Shear mode’’ for a square cross section: point A, v=0·01.

3.2.    

It is instructive to explore the shapes of the classical branches. Note that for non-zero
values of v, even for real k, the eigenvector is complex, with real and imaginary parts
contributing in the opposite phase. Thus, we actually have modes with two connected
parts. For isotropic beams real and imaginary parts reflect a separation of pure in-plane
warping from out-of-plane warping (the latter are scaled up). In classical theory this phase
shift is manifested in the fact that if the ‘‘main’’ part of the displacement has magnitude
C(x1) (e.g. u for torsion or w for bending) then a ‘‘correction’’ would have magnitude
C'(x1) (u' for the magnitude of St-Venant warping and w' for the rotation of a cross section
in accordance with Kirchhoff hypothesis, respectively). A bending mode for isotropic
I-beams is shown in Figures 12 and 13, while a torsional mode is shown in Figures 14 and
15. This provides a physical motivation for casting the problem in the form of equation
(11). Corresponding eigenvectors are assumed to be real in this case, which implies that
axial displacements are always out of phase with in-plane displacements. (The formulae
in Appendix A demonstrate range of the validity of this assumption; in particular it is
perfectly valid for isotropic beams.) Consequently, for isotropic beams this approach (see

Figure 10. ‘‘Shear mode’’ for a square cross section: point B, v=0·5.
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Figure 11. ‘‘Shear mode’’ for a square cross section: point C, v= p.

reference [34]) provides satisfactory results. The difference of less than 10% for
propagating modes can be easily explained by the thin shell approximation employed in
that paper. However, let us note in passing that even in this case the statement made in
the cited paper that these modes do not deform the cross section is incorrect. In addition,
this method of reference [34] does not provide any advantage for studying evanescent
modes, which are crucial for thin-walled, open cross sections as discussed below.

For anisotropic beams the situation is different altogether. The mode shapes of the low
frequency vibrations become coupled, and each mode is a combination of bending, torsion
and extension. For example, if we consider beams with twist-extension coupling
(antisymmetric beams) then this difference of in-plane and axial motions in phase will be
violated as can be clearly observed studying two portions of the mode for I-beams with
antisymmetric layup in Figures 6 and 7. As an example we consider an I-beam depicted
in Figure 17, where angle plies on the flanges are taken to be the same u=20° for both
lower and upper flanges. This illustrates the importance of the terms that are neglected
by restricting consideration to equation (11). Those neglected terms are written explicitly
in Appendix A.

3.3.     

For illustrative and verification purposes the dispersion curves for rectangular cross
sections were obtained. (See Figure 3; cf. reference [32] where only pure imaginary or pure
real wave numbers are displayed.) Next, the code was applied to I-beams. This choice was
motivated by the well-recognized importance of non-classical effects for this case, as well
as the existence of Vlasov’s theory. This theory is known to give satisfactory results at least
for thin-walled, isotropic beams with open cross sections (for general discussion of the
generalization of the Vlasov’s theory to anisotropic beams see reference [42]). Frequency
is normalized with respect to vs =zG/a2r where a and G are characteristic cross-sectional
dimension and elastic shear modulus, respectively. This normalization is traditional and
stems from the analysis of waves in isotropic bodies. Let us note, however, that for
anisotropic analysis this normalization can be somewhat misleading, and the actual values
of vs can be much smaller than for isotropic materials.



. .   .1114

Figure 12. ‘‘Main (inplane) part of a bending mode shape for isotropic I-beams.

The I-beam first studied has a symmetric cross section and is made from graphite-epoxy
material with a [0°/90°]4 layup in the web and a [(0°/90°)3/(u)2] in the flanges (see Figure 17).
Geometry is defined by the following ratios a/b=0·5 and h/b=0·04, where constants a,
b and h are the height of the web, the width of the flanges, and the thickness, respectively.
Dispersion curves depicted in Figure 1 are for the case u=15° For comparison, an
isotropic beam of the same geometry has been studied, and Figure 2 depicts dispersion
curves for Poisson’s ratio n=0·42.

For a rectangular cross section high frequency (HF) branches are enumerated in order
of ascending cut-off frequencies. Note that HF2 (corresponding mode shape is

Figure 13. Scaled up ‘‘correction’’ (out-of-plane) part of a bending mode shape for isotropic I-beams.
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Figure 14. ‘‘Main’’ (inplane) part of a torsional mode shape for isotropic I-beams.

antisymmetric with respect to both cross-sectional axis of symmetry), HF4 (corresponding
mode shape is antisymmetric with respect to one of the cross-sectional axis of symmetry,
and symmetric with respect to the other), and HF6 are neither purely real nor purely
imaginary for low frequencies. Since the cross section is square, HF1 and HF4 are
‘‘double’’ branches when one mode shape can be obtained from the other by a rotation
by p/2. Similarly, two propagating modes (i.e. modes with real k) that correspond to
bending in two orthogonal directions are depicted by two coinciding branches.

Figure 15. Scaled up ‘‘correction’’ (out-of-plane) part of a torsional mode shape for isotropic I-beams.
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3.4.             

Let us compare Figures 1 and 2 with Figure 3. In the latter case HF1 corresponds to
shear deformation and is effectively a bending mode which ‘‘strayed’’ from the hyperbolic
path predicted by the Euler–Bernoulli theory (see Figure 8 for comparison of the dispersion
curves). It is remarkable how the shape of the corresponding mode changes with the
frequency: for low frequency (vN =0·01—point A in Figure 8) the dominant part of the
mode is transverse translation of the cross section as a rigid body, which is the same motion
that characterizes the mode for a real k (Figure 12). This is exactly the assumption of the
Euler–Bernoulli theory. However, for a slightly higher frequency (vN =0·5—point B in
Figure 8) rotation of a cross section becomes visible (see Figure 9). This rotation is in
agreement with the Euler–Bernoulli theory—the relative amplitude of the rotation is
effectively proportional to F(k), but the cross section begins to warp. Finally in the vicinity
of cut-off frequency vN = p (see point C in Figure 8) shear deformation of the cross section
is clearly observed Figure 10 and Euler–Bernoulli theory is invalid. This illustrates the
importance of Timoshenko theory for solid cross sections.

For open cross sections, however, this high frequency branch is relatively unimportant
since there are other more significant effects: there is an evanescent branch stemming from
point A on Figure 2 with very slow decay rate that certainly has to be taken into
consideration. Hence, one sees the importance of Vlasov’s theory [43]. The mode shape
of this crucial mode (see Figure 4; cf. Figure 14) remarkably coincides with the torsional
displacement of a cross section which is in full agreement with Vlasov’s theory. The same
holds for out-of-plane warping (see Figure 5; cf. Figure 15). Of course, for purely
imaginary k both portions of the mode are in phase; i.e. the eigenvector is real. Moreover,
excellent quantitative correlation for the decay rate as provided by Vlasov’s theory was
observed. Similar observation had been also made in reference [28] where wide flange and
angle sections were considered. A detailed asymptotic study of Vlasov’s theory [42]
provided a solid mathematical foundation for this coincidence as well as a consistent
generalization of Vlasov’s theory for the anisotropic case.

In addition to the ‘‘Vlasov’’ mode a different motion corresponding to the HF1 mode
can be important for higher frequencies. This relates to the fact that this different mode
of vibration starts to penetrate deeper into the interior of the beam, until finally (point
C on Figure 2) the branch crosses the k=0 axis, and the corresponding vibrations cease
to decay at all. Figure 16 depicts the shape of this eigenfunction (‘‘camber’’ mode). Let

Figure 16. Second ‘‘non-classical’’ (camber) mode for isotropic I-beam: F(bk)=1·9996, h/b=0·04.
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Figure 17. Lay-up of anisotropic I-beams.

us note that this cut-off frequency can be two orders of magnitude less than the lowest
cut-off frequency for solid isotropic beams.

The examples considered illustrate a direct connection of the requirements for a refined
beam theory with the properties of the dispersion curves associated with a given cross
section. In particular, for open thin-walled cross sections the Timoshenko correction is
relatively unimportant, and other modes of vibrations, such as Vlasov and camber ones,
need to be considered first.

4. CONCLUDING REMARKS

A method for calculation of dispersion curves is presented. This method has been
extensively correlated with results existing in the literature. New results for both isotropic
and anisotropic I-beams are presented. Currently there is no doubt that dispersion curves
help to elucidate the physical behaviour of beam dynamics. The topology of the dispersion
curves strongly depends on the geometry and material properties of the beam cross section.
Thus, various non-classical effects have different relative importance for various beams.
This information can be used to determine which of the non-classical modes of vibration
are the most influential for a given beam. This would, in turn, pave the way for the
development of a new 1-D theory that would be capable of adequately approximating
solutions of the dynamic 3-D elasticity of beams.
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APPENDIX A: EXPLICIT COEFFICIENTS OF EQUATION (11)

The following is the derivation of explicit coefficients for equation (11) if the unknown
variables are represented in the form of equation (10). Let S
 denote shape functions for
node m before the assembly, and consider the contribution to strain energy part in the
functional (5) only from that node:

VT
mS
 (GT

h − ikGT
l )D(Gh + ikGl )S
 Vm , (A1)

where Gh and Gl are provided by equation (2) and (3) respectively, D0 [dij ] is the 6×6
matrix of material coefficients, and Vm is the vector of nodal displacements. Using
displacements in the form of equation (10), we can rewrite the strains:
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where commas denote partial derivatives with respect to coordinates in the cross-sectional
plane. Substituting equation (A2) into equation (A1) renders the following expression for
the contribution into the coefficients of the equations (11) from the considered node (for
convenience real and imaginary parts are separated):

Appendix A—(Continued on following page)
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