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Abstract

A Universal Failure Model (UFM) is proposed for complex systems that rely on large
number of entities for performing a common function. Economy of scale or other consid-
erations may dictate the need to pool resources for the common purpose, but the result-
ing strong coupling precludes the grouping of those components into modules. Existing
system-level failure models rely on modularity for reducing modeling complexity, so the
UFM will fill an important gap in constructing efficient system-level models. Conceptu-
ally, the UFM resembles cellular automata (CA) infused with realistic failure mechanisms.
Components’ behavior is determined based on the balance between their strength (ca-
pacity) and their load (demand) share. If the load exceeds the components’ capacity, the
component fails and its load share is distributed among its neighbors (possibly with a
time delay and load losses). The strength of components can degrade with time if the
load exceeds an elastic threshold. The global load (demand) carried by the system can
vary over time, with the peak values providing shocks to the system (e.g., wind loads
in civil structures, electricity demand, stressful activities to human bodies, or drought
in an ecosystem). Unlike the models traditionally studied by CA, the focus of the pre-
sented model is on the system reliability, and specifically on the study of time-to-failure
distributions, rather than steady-state patterns and average time-to-failure characteris-
tics. In this context, the relationships between the types of failure distributions and the
parameters of the failure model are discussed.

1. Introduction

As a part of the design process of complex systems, elaborate mapping is usually
developed between tasks (functions) and the components that accomplish those tasks.
A parallel process should simultaneously provide the mapping between the failures of
those components to accomplish those tasks and the resulting consequences to the sys-
tem. This parallel process is named differently depending on the design phase and the
type of industry (functional failure mode and effect analysis, functional hazard analysis,
etc). Ensuring the efficiency and continuity of this process throughout the design phases
and operation provides one of the most important opportunities for improving the safety
and reliability of complex systems. To this end, the use of universal modeling language
(UML) [1] and, in particular, system modeling language (SysML) [2] and similar stan-
dardized tools for expressing functional interdependence provide an important means for

∗Corresponding author
Email address: vitali@gatech.edu (Vitali Volovoi)

Preprint submitted to Reliability Engineering and System Safety Accepted for Publication: 2013



describing and tracking failure modes in a consistent fashion throughout the system’s life
cycle.

There is fundamental complexity issue related to the vastness of the state space that
corresponds to failure scenarios of complex systems and the most efficient way of dealing
with the resulting complexity is developing hierarchical models. However, the modularity
that is required for those models is often broken by conflicting objectives, including the
economies of scale that favor pooling resources together, and hence introduce coupling
among the large number of components. The coupling is induced by shared resources
and functionalities. This provides the main impetus for the development of the Univer-
sal Failure Model (UFM) that is specifically focused on situations where modularity is
violated, thus providing a complementary building block for constructing comprehensive
system reliability models. The rest of the paper is organized as follows: first, UFM is
introduced and brief overview of relevant literature is provided, next UFM is discussed
in the context of modeling failures of complex systems with the focus on the need to
compress the information about individual subset of entities that comprise the system.
To this end, the use of parametric distributions for time to failure is advocated, and an
example of analyzing UFM from this perspective is provided. Finally, conclusions are
provided and future research directions are discussed.

2. The Proposed Universal Failure Model (UFM)

The UFM is intended to provide a middle ground or an interface between compact
parametric representation of failures used in system reliability and design on the one
hand, and detailed domain-specific failure models on the other. In this model, a single
functionality can be supported by a very large number of components, and this common
purpose, as well as reliance on common resources, provides coupling mechanisms preclud-
ing the grouping of those components into modules that can be independently analyzed.
The main focus of this paper is the failure dynamics of this coupled behavior. The com-
ponents need not be identical, but they all are assumed to serve the same purpose. At
the component level, behavior is determined based on the balance between the strength
(capacity) of the component and its load (demand) share.

2.1. Background

In spirit, the proposed model is similar to the significant body of work accumulated
in recent years in the area of large-scale networks [3], and specifically, their robustness
to failure. The initial focus of those studies was on random failures (e.g., nodal re-
moval). More recently however, dynamic failure scenarios have attracted more attention,
especially in the aftermath of the Northeast Blackout of 2003. In particular, capacity
constraints and propagating failures as a result of shared load have been studied [4], as
well as applications to power grids [5, 6], aviation [7], and congested networks [8]. The
prevalence of certain network topologies in nature, including those that follow power law
(scale-free) distribution of links, and their susceptibility to various failures in compari-
son to deliberately designed topologies such as “highly optimized topologies” (HOT) [9],
provide important insights into the nature of failures for networked systems. Specifically,
it is important to note the lack of robustness of HOT with respect to conditions that are
significantly different from the ones that the networks were originally designed for.

While it is clear that network models (where nodes and links are distinguished) are
relevant to the understanding of failures in complex systems, even simpler architecture
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effectively consisting of nodes only (with links implied by geometric proximity) has been
selected as a starting point for the current model, as it provides sufficient flexibility for
exhibiting a broad range of patterns while being simple enough for exhaustive analysis of
relevant statistical properties. The ultimate objective of UFM is to facilitate classification
of failure dynamics, and in particular, identify distinct patterns of failure propagation as
functions of the input parameters and the “tipping points”, as well as the most efficient
ways of delaying the occurrences of those tipping points, or preventing them all together.
The resulting formalism can be classified as Cellular Automata (CA) with some similarity
to sandpile models [10]. Unlike traditional CA models that assume that the behavior of
individual cells is purely local, global variations of the load (“shock models” [11]) can
be of significant importance and therefore provisions are made to include these global
variations in the modeling. In addition, specific memory of past states (accumulated
damage in a given cell, or unserviced demand) can be also introduced (this is analogous
to research on the use of cell memory [12] in CA models).

In recent years there were multiple applications of CA to provide detailed domain-
specific models, including the durability of concrete in aggressive environments [13], multi-
pit corrosion [14], wind damage in forest planning [15], rock failures [16], and creep rup-
ture [17]. Among the relevant general research in CA, connections to self-organized critical
behavior models used to model landslides, forest fires, and earthquakes [18] must be noted,
as well as models that extend the notions of damage in CA, such as the introduction of
damaging agents [19]. Those and similar resources can be used to map the properties of
the UFM to specific domains. To this end, relevant detailed damage propagation models
(not CA-based) can be utilized as well, including the work on semicrystalline polymer
fiber [20] and models of composite damage propagation [21]. In general, CA is mostly
concerned with steady-state patterns, and in terms of the failure propagation, only the
averaged property, e.g., expected transient time, is usually assessed. In contrast, spe-
cific shapes of distributions are studied in this work, thus relating the study to existing
statistical reliability models [22, 23] as well as work that related physics-based models
of interactions of several specific failure modes to the time-to-failure distributions (e.g.,
investigation of coupling between the pitting and corrosion [24]).

2.2. UFM description

In the following description we consider a two-dimensional case, although both one-
and three-dimensional cases might be of interest as well (different shapes of cells might be
also explored). Let us consider n nodes, each having an initial strength si(0), i = 1 . . . n
that is independent and identically distributed (with distribution s(x)) and subject to the
total load L(0) that is assumed to be uniformly applied to each cell (initially, before the
system incurred any damage), so the each cell initially carries the load li(0) = L(0)/n.
The total load can vary with time in a random fashion L(t). The strength of a component
consists of elastic (reversible) and plastic (irreversible) phases: for the load below a
certain threshold βsi(t), where 0 ≤ β ≤ 1 elastic response takes place (there is no
damage accumulation). For values of the load that exceed the threshold βsi(t) damage
accumulates and the strength of the component is reduced. While different damage
accumulation models can be considered [11], a simple accumulation rule is used in the
following example:

si(t +∆t) = si(t)−
τ

∆t

li(t)− βsi(t)

1− β
(1)
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Here τ is the characteristic time scale of the damage accumulation. When the load
exceeds the strength (demand exceeds the supply), the component fails. If failure occurs,
the load is redistributed (shared) by the neighboring cells/nodes. This load redistribution
has a characteristic neighborhood radius r (here defined as Chebyshev distance, that is
the minimum of the distances along the coordinate axes) and time delay φ. The global
failure of the system can be defined in different ways: either “holes” of a certain size are
developed, there is a continuous “cut” of failed components that connects non-adjacent
boundaries, or a certain portion 0 < η ≤ 1 of the population has failed. It is interesting to
explore the relationships among these different global failure states, and a hypothesis can
be tested that when the system reaches a critical state, it becomes unstable and several
failure criteria are satisfied more or less at the same time (cf. percolation).

t=1 t=10 t=25

t=50 t=64 t=100

Figure 1: A snapshot of the system state. Light green cells correspond to normal loading, red cells are
failed units, while yellow represents the cells that experience permanent damage

Another interesting question relates to modeling edge effects. Specifically, one can
consider mirror-boundary conditions in terms of load redistribution, so that if an element
at the edge fails, part of the load is being redistributed “outside” of the boundary. This
option seems attractive if the considered model represents only a portion of the actual
system, however, the assumption that the outside boundary elements all stay intact will
obviously lead to overly benign conditions for the edge elements. A more balanced ap-
proach consists of randomly assigning failures to the “imaginary” elements at the border
at the same rate as the observed elements in the system, thus mimicking load redistribu-
tion for the boundary elements of an “open” system.

An alternative approach to modeling edge effects is to model the finite size of the
system while not allowing any load redistribution outside of the model. In this case,
scaling issues can be investigated [25], and in general the edge elements can be subject
to higher loads. The analogy with the crack growth in materials that are initiated at the
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surface can be explored in this context. We will refer to the model as a “closed system”
(since the load is not transferred over the boundary).

2.3. Example of the UFM implementation

Let us consider a closed 10× 10 system in terms of load redistribution (as described
above) with the Chebyshev radius 1 (only immediate neighbors are affected, a so-called
Moore neighborhood) and a steady global load L(t) = L(0). The failure propagation
follows Figure 1; in the figure the following parameters are used: plastic threshold β = 0.5
and time scale τ = 0.3, the initial load is li(0) = 0.35; the initial strength is distributed
in accordance with the normal distribution with the mean value µ = 1.0 and standard
deviation σ = 0.25; the load is redistributed immediately φ = 0. Time step is ∆t = 1, and
simulation is until t = 100. We note that in the beginning only a few cells are stressed;
we can see how the damage gradually develops. However, in the case of this run, a stable
state is reached by the time t = 64, and no further damage occurs.

3. Interfacing the system-level model

As described in the introduction, the goal of UFM is provide building blocks for
constructing system models. In order to develop the interface of the UFM with the
system-level failure analysis, let us recall the main challenges of modeling the failures of
complex systems [26]:

3.1. Complex failures in complex systems

• Large State Space: System failures can be caused not only by the components’ fail-
ure to perform their intended functions (errors of omission) but also by performing
unanticipated actions (errors of commission). This greatly increases the state space
needed to capture systems’ behavior: instead of a binary choice for a component (it
either functions or it does not), additional dimensions of the component’s state must
be taken into account. Furthermore, discovering these additional dimensions of the
component’s state is an extremely challenging process. As the design progresses, those
discovered dimensions should be incorporated into the functional requirements for the
component.

• Difficulty in assessing failure mode priority: System failures do not have to be caused
by a single component failure, and instead could be the result of combination of several
deviations by components from their nominal states. These deviations could stem from
partial degradation of the component’s performance, providing the need for further
increases of the underlying dimensionality of the state space (as those degradation
levels must be distinguished).

• Disparate set of domain-specific failure mechanisms leads to elaborate patchwork of
tools and methods that are used by the experts to evaluate the reliability of compo-
nents and systems. In particular, two distinct approaches to reliability prediction can
be identified: on the one side of the spectrum, there is a domain-specific physics-based
models of failure mechanisms for the components taken in the context of their envi-
ronment (e.g., corrosion). On the other side of the spectrum, data-driven statistical
analysis of field or test data leads to reliability predictions. In all practical cases, the
data-driven approach includes some physics-based considerations, although they might
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not be explicitly stated. In particular, the use of parametric distributions (e.g. Weibull
or Lognormal) at some point were motivated by the physics of failure, or historically
performed well, which implies that the new designed system is deemed sufficiently
similar from the physics of failure perspective to justify the use the same type of distri-
bution. As will be discussed below, the type of distribution can dramatically influence
the quality of predictions. Accelerated testing and system-level analysis both combine
physics-based and data-driven approaches. The former relies on statistical representa-
tion of time to failure under a controlled environment, and then rely on physics-based
considerations to predict the timing of failures in the field. The latter relies on sta-
tistical information about component failures (that can be obtained either from past
experience or based on physics-of-failure modes) and the information about the inter-
relationships among the components to infer the relevant reliability characteristics of
the system. In the case of repairable systems, those characteristics are not limited to
simple time to failure, but might also include availability, expected number of failures,
etc. The fidelity of modeling interrelationships among components can very from sim-
ple logical “and” and “or” (e.g., fault trees) to discrete event-representation where the
timing and order of events is taken into account, but the state space is discrete (e.g.,
Markov chains and stochastic Petri nets (SPN) [27]), and to models where both time
and spatial description is continuous (e.g., agent-based simulation)[28].

Given these challenges, the means to improve system safety and reliability and potential
place of UFM are discussed next.

3.2. Coping with the complexity of failures

• First, if one accepts the notion that complexity can lead to system failures, it is im-
portant to measure the complexity. The complexity of the system is related to the
amount of information needed to describe the system (following a general definition
of Kolmogorov complexity expressed as entropy [29]), and, specifically, to the size of
the state space representing distinct states of the system. The simplest proxy for this
parameter is the number of components that comprise the system, and this measure
of system reliability implies that the system is designed so that the failure of any of its
components results in the failure of the whole system (i.e., the system does not have
any redundancy). Under these (not very practical) assumptions, the reliability of the
system is simply the product of the reliability of the individual components [30].

• Modularity: Alternative measures of complexity take into account not only the number
of entities and the size of state space describing those entities, but also some measures
of the amount of interrelationships among those entities (couplings). In particular,
using graph-theoretical setting allows to represent individual components as nodes and
use the links between pairs of nodes to represent dependence between the correspond-
ing components’ states (i.e., the couplings. Several measures of complexity rely on
these concepts, including a measure based on branching diversity for graphs that can
be represented as trees (no cycles) of collection of trees (forests) [31] and cyclomatic
complexity (related to the number of linearly independent loops) [32]. Modularity (cf.
the related principles of encapsulation and information hiding that are formalized in
object-oriented programming) provides a well-accepted means of reducing complexity
by deliberately designing the system’s architecture in a hierarchical fashion and min-
imizing inter-modular coupling. However, efficiency (due to economies of scale) and
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other practical considerations often lead to a situation where a single functionality is
supported by a very large number of components, and this common purpose, as well
as reliance on common resources, provides inevitable tight coupling mechanisms. As a
result, for such tightly-coupled systems it is impossible to group the components into
modules that can be independently analyzed.

At the same time, there is compelling evidence that in both natural and engineering
domains complex systems are unlikely to be fully coupled, as modular architecture
provides clear advantages in developing desirable systems properties. The evolutionary
advantage of so-called nearly decomposable systems has been demonstrated for biolog-
ical systems [33], while similar processes were identified in the history of steam engine
development [34]. These concepts are also explicitly employed in the design princi-
ples of computer systems [35] (including structured design [36]). In this context the
importance of so-called “weak links” has been explored in various domains, including
biological systems [37].

Deviation from modular design can lead to serious consequences, as argued by Per-
row [38] who postulated that a high degree of complexity and level of coupling inevitably
lead to accidents in complex systems by inducing a conflict between centralized and
decentralized modes of control. In this setting, coupling, rather than representing a
single aspect of complexity has a distinct meaning and is measured in terms of the
time required for the disturbances to propagate among entities. This is an important
parameter since the propagation time is related to the time available for reaction to
the disturbances in the system. In some (but not all) circumstances it is reasonable to
assume that those two measures of coupling are related, as a large number of links are
expected to facilitate faster disturbance propagation.

The relative merits of two opposing trends (economies of scale vs. tight coupling) could
be fundamentally hard to evaluate due to the inherent differences in the frequencies of
the associated feedback (see the discussion on the importance of the feedback in avoid-
ing failures [26, 39]). Indeed, while the benefits of economies of scale are immediately
obvious, the increased vulnerability to catastrophic failures due to tight coupling could
take years to exhibit itself (when the decision-makers responsible for the selection of
the system’s architecture are long gone). This shortsightedness effect is well known in
public policy [40], and providing at least partial remedy for this myopia by developing
credible models that explore future scenarios is a very attractive goal. It is hoped that
the current work will lead to some small steps toward that goal. From more technical
perspective, it is also interesting to note the parallels with the recent popularity of
copulas in modeling dependencies in the context of financial risks [41]. Indeed, unlike
standard correlations, copulas provide the means for modeling scenarios where under
normal circumstances components of the system appear to be independent, while in
stressed conditions those components exhibit highly coupled dynamics. In this context
it is interesting to see whether UFM eventually allows to demonstrate similar phe-
nomenon endogenously. Finally, it is interesting to explore how the presence of two
opposing forces can lead to a self-organized configuration in terms of the amount of
coupling, cf. [42].

• Redundancy is a fundamental principle of design for reliability [43] recognized since the
time of Von Braun and implemented under various names: “no single-point failure”
(in aerospace), “damage tolerance” (in structures), and “defense-in-depth”(nuclear
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plants) [44]. Redundancy increases the system complexity, but also alters the rela-
tionship between reliability and operational costs. If the reliability of the system is
driven by component reliability, then lower reliability implies more frequent mainte-
nance (and increased demand for spare parts), leading to increased operational cost.
However, this relationship between reliability and maintenance costs can be reversed if
redundancy is used to improve system reliability, as component failures do not result in
system failures, yet require maintenance actions [26]. One of the interesting potentials
of UFM is facilitating a quantitative measure of effective redundancy (e.g., developing
a coherent metric expressed as a scalar that is not necessarily an integer).

• Component Reliability: One of the simplest methods of increasing component reliabil-
ity is derating [43], where the components are rated for a higher stress environment than
they experience in operation. Plotting the probability distribution of both the load,
l(x), and the strength, s(x) (also known in other applications as demand and available
resources or supply, respectively) provides visual representation of the chances of fail-
ure (see Figure 2). The intersection of the two probability density functions (shown
in red) is indicative of the possibility of failure, although, contrary to common belief,
this area does not numerically represent the probability of failure. Effectively, derating
implies increased safety margins when the mean corresponding strength (capacity) is
further separated from the load (demand). One can also interpret derating as internal
redundancy (as the component has a spare capacity that provides protection against
variability, see also the discussion on the effective redundancy above).

Probability of failure can also be reduced by decreasing the variance of each of the
distributions, in particular that of the strength, which provides one of the motivations
for statistical quality control [45] and similar concepts. Indeed, improving manufac-
turing tolerances and reducing other variabilities during the manufacturing process
leads directly to the reduction of the variability of the strength distribution, and indi-
rectly (e.g., via the influence on the surrounding components) to similar effect for the
load variability. In structural applications, the distance between the nominal values of
strength and load can be associated with safety factors [46]. Qualitatively, it is clear
that for a structural component that is subject to degradation, both distributions will
move toward each other as time progresses, leading to increased probability of failure.
While the leftward movement of the strength curve is attributed to the degradation of
the component itself (at the local level, some portion of the component), the rightward
movement of the load curve is caused by the load redistribution due to the degradation
of the component environment (or at the local level, the degradation of the adjacent
portions of the same component). Quantification of the dynamic relationship between
the load and the strength is significantly more challenging and constitutes another
important goal of UFM.

3.3. Motivational example

Let us consider stress-rupture failure mode for composite overwrapped pressure ves-
sels (COPV) that are used to store fuel in space vehicles and gas in other applications.
COPVs are designed to store gas under the pressure p0,which is a fraction of the ulti-
mate pressure that would blow up COPVs. Manufacturing processes for COPVs have
significant variability (in particular, due to the strength variability of the fibers used in
the composite). A proof test is used to screen out weak vessels: for a short period of
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Figure 2: Dynamic Relation between the strength and the load.

time (usually measured in minutes), COPVs are tested under pressure that is significantly
higher than p0. This leads to the “to proof or not to proof” question: on the one hand, the
damaged vessels are discovered; on the other hand, the stronger ones that survive the test
might have been weakened. The underlying phenomenon is fully analogous to observer
effect in physics and the original formulation of the Heisenberg uncertainty principle (but
distinct from the modern interpretation of the latter that involves inherent fluctuations
of the quantities of interest regardless of the observation [47]). Is the resulting population
actually better (i.e., has higher reliability) than the original population? The question
can be related to the shape of the time-to-failure distribution: if the population failure
rate decreases with time, then proofing makes sense (as the effective age of the system is
increased by proofing). It can be observed that the heterogeneity of the the population
leads to a decrease in failure rate with time (as only the stronger members of the popu-
lation survive). At the same time, effective redundancy acts in the opposite direction (as
redundancy degrades due to random failures at the component level that do not cause
system failure). Similarly, degradation mechanisms at the component level also lead to
the failure rate increasing with time. Therefore one needs to understand which of the
opposing trends dominates, and the UFM aims at addressing such trade-offs. To this end,
general mapping between input parameters of UFM and the types of parametric distri-
butions for time to failure can provide an effective interface with system-level models.

4. Parametrization of time to failure

State-space based models for evaluating system safety and reliability rely on compact
representation of state transitions (e.g., failures and repairs, or recoveries from intermit-
tent faults). Parametric distributions are preferred from the compactness perspective,
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Figure 3: Probability density function (PDF) for failure of a component with variability driven by the
operational conditions (temperature following a Gaussian distribution)

assuming that their accuracy is assured. The question of selecting appropriate distribu-
tion might seem obsolete in the modern world where non-parametric representation can
be easily stored on a computer; however, selection of the distribution effectively implies
infusing the statistical process with physics-based knowledge, and significantly reduces
the need for experimental data about the system. Successful application of parametric
distributions is closely related to taking advantage of the underlying general physical
processes, just like the blind use of parametric distributions can lead to serious modeling
flaws. The central limit theorem assertion that the sum of large number of independent
random variables follows normal distribution is the best-known case, but in the context
of reliability, the importance of several types of distributions is similarly clear, as briefly
discussed next.

4.1. Commonly used parametric distributions

Exponential Distribution A failure transition with the constant rate λ follows an
exponential distribution, whose cumulative form is given by Fe(t) = 1 − e−λt. λ is the
inverse of the mean time to failure. State-space models with constant transition rates are
particularly convenient: first, each transition is fully characterized by a single parameter,
λ; and second, the resulting process is Markov (i.e., the chances of transitioning to a
new state are fully determined by the current state), which drastically simplifies the
analysis. In the context of repairable systems, steady-state results often depend only on
the mean parameters of the distribution, justifying the use of exponential distribution
even if the underlying distributions are different (see, for example, the extensions of
the Palm-Khinchin theorem for queues in logistics applications [48]). “The central limit
theorem for repairable systems” provides another argument for resorting to exponential
distributions: in a complex repairable system with multiple components, failures form
a homogeneous Poisson process [49]. This theorem is only valid, however, if there is no
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coordination among component failures. In practice, for many systems with clear aging
or degradation patterns, major inspections and overhauls impose an overall structure,
and within each maintenance cycle the failure rate can vary significantly.

Weibull Distribution Fw(t) = 1 − e−(
t
θ )

β

are often used due to their flexibility of
representing rates that can be either increasing or decreasing with time. The former cor-
respond to the shape parameter β > 1 (e.g., failures in deteriorating systems), while the
latter correspond to the shape parameter β < 1. Conveniently, for β = 1, Weibull distri-
bution becomes exponential, with the scale parameter θ representing the inverse of the
transition rate. An additional reason for using Weibull distribution in system reliability
is its relationship to the “weakest link” mode of failure. The Fisher-Tippett-Gnedenko
theorem [50, 51] states that for a large number of identically distributed functions, the
competing risk (i.e., the minimum of failure times) will converge to one of the three
families of extreme value distributions (Weibull, Gumbel, or Fréchet).

Lognormal Distribution The lognormal model of time to failure is justified when
a process moves towards failure based on the cumulative effect of many small “multi-
plicative” shocks. Specifically, if at any instant in time a degradation process undergoes
a small increase in the total amount of degradation that is proportional to the current
total amount of degradation, then the time to failure (i.e., reaching a critical amount of
degradation) is expected to follow a lognormal distribution [52].

There are other situations where the use of lognormal distributions can be justified
as well. For example, let us consider the scenario where the sole source of uncertainty
is the operating temperature (while uncertain, it stays constant over time): for a fixed
operating absolute temperature T the failure time t is uniquely determined. The Arrhe-
nius equation is used for the rate of chemical reactions, k(T ) = a exp

(

− Ea

RT

)

, where a is
a pre-exponential factor, Ea activation energy, and R gas constant. If for an operation
with (constant) temperature T0 the time of failure is t0, then the time of failure for other
temperatures can be uniquely determined as t = g(T ) = α exp

(

β

T

)

, where the following

notations are used: α = t0 exp
(

− Ea

RT0

)

and β = Ea

R
. Next, if the operation temperature

is normally distributed with the mean value T0 and the standard deviation σ, one can
obtain the corresponding failure distribution in analytical form using the fact that there
is a one-to-one relationship between the operation temperature and failure time. Indeed,
the application of the formulae for the function of a random variable to calculate the
probability density function for the time failure yields

ft(t) = fT (g
−1(t))

∣

∣

∣

∣
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dt
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[
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(

t
α

)]2
(2)

As can be observed in Fig. 3, this function (black dotted curve) can be approximated
quite well using log-normal distribution (green solid curve), while Weibull distribution is
poorly suited in this case (dashed purple curve).

Other distributions Other distributions can also be applicable, including Gamma
distribution [53] and Birnbaum Saunders distribution, which is often used to model fatigue
life [54]. In addition, as discussed later, time shifts can be introduced to a distribution
to capture dormant phase of failure development. One of the intriguing possibilities is
to investigate applicability of a wider range of parametric distributions that found ap-
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plications in finance in describing values of relevant parameters (rather than time to
failure), especially in relation to financial crashes, including stretched-exponential distri-
butions [41] and log-Lévy distributions [55]. A systematic justification of the use of a
given distribution can be provided by relating the most appropriate distribution to fit the
universal failure model for a given set of parameters (providing a mapping between the
UFM parameters and appropriate distributions); at the same time a complementary map-
ping between existing domain-specific models and the appropriate range of parameters
of the universal failure model can be developed as well.

4.2. Selecting failure distributions using the UFM

Next, let us evaluate the statistics of time to failure for a slightly different configura-
tion: plastic threshold β = 0.55 and time scale τ = 0.2. The initial load is li(0) = 0.45,
and the load is redistributed immediately φ = 0. The initial strength is distributed in
accordance with the normal distribution, with the mean value µ = 1.0 and standard de-
viation σ = 0.2. In addition, let us consider Weibull distribution individual cell strength,
instead of the normal distribution, since Weibull often better matches the strength distri-
bution (for example of fibers in composites). To facilitate the comparison, we match the
first two moments of the normal distribution by appropriately selecting Weibull shape
parameter β = 5.7974 and the scale θ = 1.08 100 steps are conducted and 100, 000 Monte
Carlo runs are used. The failure criteria for the system is based on on the fraction of
failed states η = 0.9.

There is about a 33% chance that the system will not fail at all by the end of simulation
(this chance is the same for both distributions used for the initial strength distribution).
This is a somewhat unusual situation from the classical reliability perspective, where the
time to failure is usually assumed to be given by a continuous distribution. In general,
as can be observed in Figure 4 that shows both histograms of the time to failure, the
difference between the use of two distributions to model the strength in this case is quite
minimal (one can observe a very minor effect of a slightly heavier left tail for the Weibull
distribution).
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Figure 4: Distribution of failure time for the initial strength following normal and Weibull distributions
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Next, we will further analyze the data obtained for the case where the strength was
normally distributed at t = 0. Let us try to fit several types of distributions that are
commonly used to describe time to failure. Here it suffices to say that none of the four
distributions fits the data too well (Figures 5, 6 demonstrate the fit based on match-
ing mean and standard deviation, and the fit using the Maximum Likelihood Estimate
(MLE), respectively. We can note that the data is clearly skewed (so that the “fatter” or
“heavier” is to the right); this corresponds to the positive value of skewness. The value
for the considered data is γd = 1.485. For the considered range of the shape parameters
of Weibull distribution has negative skewness, and one can observe that the match to the
data is poor indeed, especially if MLE is used. The results can be overly conservative: out
of 100, 000, the first failure took place at time t1 = 13 (out of 100, 000, there are only two
such cases), while Weibull distribution (based on MLE) would predict 3505 failures by the
time t = 13. The best fit is provided by lognormal and Birnbaum-Saunders distributions:
predictions for the number of failures is 43 and 36 out of 100, 000, respectively.
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Figure 5: Matching failure time distribution using common parametric distribution: first two moments
are matched with the data;

However, we note that even those two distributions significantly over-predict the rel-
ative weight of the tails. In fact, the kurtosis (peakedness) of the data κd = 7.39 is
almost twice the value of both parametric approximations (κl = 3.83 and κb = 3.73 for
MLE approximations of lognormal and Birnbaum-Saunders, respectively). Similarly, the
skewness is off as well (σd = 1.485 vs. σl = 0.68 and σb = 0.66). There are two pos-
sibilities here: the underlying distribution is indeed different (and highly short-tailed),
or there is a time shift that exists in the system. Checking the second hypothesis, and
matching the skewness of the data, we can determine effective time shifts t0l = 13.44,
t0b = 15.06. The resulting distributions are shown in Figure 7, recalling that there were
no observed failures for t < 13, and that shifted kurtosis estimates are much closer to the
data κ̃l = 7.16 and κ̃b = 6.58; we can conclude the there there is a possibility of effective
time delay before the failures start to occur. The possibility of latent time in the systems
is of great potential importance, and certainly merits further investigation.
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Figure 6: Matching failure time distribution using common parametric distribution using Maximum
Likelihood Estimate (MLE)

5. Conclusions and Future Work

A Universal Failure Model (UFM) is introduced for complex systems that rely on large
number of entities to accomplish a common function. It provides fundamental building
blocks for the modeling of failures of complex systems by capturing the failure dynamics
of a very large number of coupled entities (components) supporting a single function-
ality. The resulting strong coupling precludes the grouping of those components into
modules as required for hierarchical model construction. Existing system-level failure
models rely heavily on modularity for reducing modeling complexity, so the UFM can
fill an important gap in constructing efficient system-level models. Such models can be
useful in addressing the challenges of modeling interdependent infrastructures [56]. Con-
ceptually, the UFM resembles cellular automata (CA) supplemented with realistic failure
mechanisms. Components’ behavior is determined based on the balance between the
strength (capacity) of the component and their load (demand) share. If the load exceeds
the components’ capacity, the component fails and its load share is distributed among its
neighbors (possibly with a time delay and load losses). The size of the neighborhood that
assumes the load of the failed component determines how local the load redistribution is.
The strength of components can degrade with time if the load exceeds a certain elastic
threshold. While individual features of the UFM appear in various contexts (shock mod-
els in reliability, balance of supply and demand in economics, balance of strength and
load in structures, the visual nature of CA), they have not been previously combined into
a single model. The interplay of those features provides a “sandbox” where the dynamics
of complex systems can be systematically explored. As a result, system design trade-offs
among the effective redundancy, strength variability (as related to manufacturing toler-
ances and therefore costs), and healing capabilities can be made. Important distinctions
of the UFM as compared to existing CA models include external global shocks (so that
behavior is not purely local), assigning memory to the states to account for accumulated
damage, and explicit emphasis on the interface with the system-level reliability mod-
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Figure 7: Introducing the time shift for lognormal distribution (shift t0l = 13.44) and Birnbaum Saunders
(shift t0b = 15.06)

els (in particular, stochastic Petri nets). The latter require a focus on specific patterns
of time-to-failure distributions, rather than steady-state patterns and average time-to-
failure characteristics that are traditionally studied in CA. The missing details specific to
particular systems (i.e., anisotropy of load redistribution) can be captured indirectly by
adjusting the parameters of the model based on more detailed domain-specific damage
models, providing predictive capabilities that are superior to purely data-driven models.
The simplicity and visual nature of the proposed models can facilitate a broad under-
standing of failure mechanisms in complex systems not only by the experts in failure
analysis but by a broader audience, including the designers of those systems.

Future work will be focused on systematic investigation of mapping between the differ-
ent input parameters and extensions of UFM on the one hand, and the observed patterns
of time-to-failure and other relevant measures of failure processes (including identifying
system-failure precursors) on the other. In particular, various patterns of global load (de-
mand) variations over time will be investigated, with the peak values providing shocks
to the system (e.g., wind loads in civil structures, electricity demand, stressful activities
to human bodies, drought in an ecosystem, or panic in a stock market). Introduction
of alternative to lattice arrangements of the neighbors (thus providing connection to
coarse-scale network models) is another natural direction. Finally, investigating optimal
strategies for restoring/healing failed components to prevent system failures is also of
great interest.
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